Publications by authors named "Berno Dankbar"

Bone resorption is highly dependent on the dynamic rearrangement of the osteoclast actin cytoskeleton to allow formation of actin rings and a functional ruffled border. Hem1 is a hematopoietic-specific subunit of the WAVE-complex which regulates actin polymerization and is crucial for lamellipodia formation in hematopoietic cell types. However, its role in osteoclast differentiation and function is still unknown.

View Article and Find Full Text PDF

Objective: The aim of this study was to assess the extent and the mechanism by which activin A contributes to progressive joint destruction in experimental arthritis and which activin A-expressing cell type is important for disease progression.

Methods: Levels of activin A in synovial tissues were evaluated by immunohistochemistry, cell-specific expression and secretion by PCR and ELISA, respectively. Osteoclast (OC) formation was assessed by tartrat-resistant acid phosphatase (TRAP) staining and activity by resorption assay.

View Article and Find Full Text PDF

The interactions of fibroblast-like synoviocyte (FLS)-derived pro-inflammatory cytokines/chemokines and immune cells support the recruitment and activation of inflammatory cells in RA. Here, we show for the first time that the classical myokine myostatin (GDF-8) is involved in the recruitment of Th17 cells to inflammatory sites thereby regulating joint inflammation in a mouse model of TNFalpha-mediated chronic arthritis. Mechanistically, myostatin-deficiency leads to decreased levels of the chemokine CCL20 which is associated with less infiltration of Th17 cells into the inflamed joints.

View Article and Find Full Text PDF
Article Synopsis
  • Lasp1 is a protein linked to breast cancer and tumor invasion, but its regulatory role in aggressive cell transformation is not fully understood.
  • This study reveals that Lasp1 is connected to chronic inflammatory arthritis and plays a crucial role in cell-to-cell interactions involving Cadherin-11 and β-Catenin in synoviocytes from patients and mouse models.
  • Blocking or removing Lasp1 impacts tissue formation and inflammation, indicating it may be a potential therapeutic target for treating severe inflammatory joint conditions.
View Article and Find Full Text PDF

Although the impact of osteoblast-osteoclast crosstalk in bone remodelling has been intensively studied, the importance of osteocytes, descendants of osteoblasts, in this process has for a long time been neglected. During their embedding phase, osteocytes undergo considerable phenotypic transformation, from a cuboidal, highly metabolically active osteoblast secreting extracellular matrix to a small, stellate, quiescent osteocyte with numerous long dendrites. Osteocytes are encysted in cavities (lacunae) and their dendritic extensions are located in tunnels (canaliculi) forming a remarkable, highly branched, lacunar-canalicular signalling network that spans the entire bone matrix.

View Article and Find Full Text PDF

Synovial joints are unique functional elements of the body and provide the ability for locomotion and for physical interaction with the environment. They are composed of different connective tissue structures, of which the synovial membrane is one central component. It shows a number of peculiarities that makes it different from other membranes in our body, while several lines of evidence suggest that synovial fibroblasts, also termed fibroblast-like synoviocytes (FLS) critically contribute to these peculiarities.

View Article and Find Full Text PDF

Background: Activin A and follistatin exhibit immunomodulatory functions, thus affecting autoinflammatory processes as found in rheumatoid arthritis (RA). The impact of both proteins on the behavior of synovial fibroblasts (SF) in RA as well as in osteoarthritis (OA) is unknown.

Methods: Immunohistochemical analyses of synovial tissue for expression of activin A and follistatin were performed.

View Article and Find Full Text PDF

Homeostatic bone remodelling becomes disturbed in a variety of pathologic conditions that affect the skeleton, including inflammatory diseases. Rheumatoid arthritis is the prototype of an inflammatory arthritis characterised by chronic inflammation, progressive cartilage destruction and focal bone erosions and is a prime example for a disease with disturbed bone homeostasis. The inflammatory milieu favours the recruitment and activation of osteoclasts, which have been found to be the cells that are primarily responsible for bone erosions in many animal models of inflammatory arthritis.

View Article and Find Full Text PDF

Sclerostin, an inhibitor of the Wnt/β-catenin pathway, has anti-anabolic effects on bone formation by negatively regulating osteoblast differentiation. Mutations in the human sclerostin gene (SOST) lead to sclerosteosis with progressive skeletal overgrowth, whereas sclerostin-deficient (Sost(-/-)) mice exhibit increased bone mass and strength. Therefore, antibody-mediated inhibition of sclerostin is currently being clinically evaluated for the treatment of postmenopausal osteoporosis in humans.

View Article and Find Full Text PDF

Myostatin (also known as growth and differentiation factor 8) is a secreted member of the transforming growth factor-β (TGF-β) family that is mainly expressed in skeletal muscle, which is also its primary target tissue. Deletion of the myostatin gene (Mstn) in mice leads to muscle hypertrophy, and animal studies support the concept that myostatin is a negative regulator of muscle growth and regeneration. However, myostatin deficiency also increases bone formation, mainly through loading-associated effects on bone.

View Article and Find Full Text PDF

Introduction: Inflammatory destructive arthritis, like rheumatoid arthritis (RA), is characterized by invasion of synovial fibroblasts (SF) into the articular cartilage and erosion of the underlying bone, leading to progressive joint destruction. Because fibroblast activation protein alpha (FAP) has been associated with cell migration and cell invasiveness, we studied the function of FAP in joint destruction in RA.

Methods: Expression of FAP in synovial tissues and fibroblasts from patients with osteoarthritis (OA) and RA as well as from wild-type and arthritic mice was evaluated by immunohistochemistry, fluorescence microscopy and polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Background: The matrix metalloproteinases (MMPs) and their endogenous regulators, the tissue inhibitor of metalloproteinases (TIMPs 1-4) are responsible for the physiological remodeling of the extracellular matrix (ECM). Among all TIMPs, TIMP3 appears to play a unique role since TIMP3 is a secreted protein and, unlike the other TIMP family members, is tightly bound to the ECM. Moreover TIMP3 has been shown to be able to induce apoptotic cell death.

View Article and Find Full Text PDF

Objective: Synovial fibroblasts (SFs) contribute to several aspects of the pathogenesis of rheumatoid arthritis (RA) and have been implicated most prominently in the progressive destruction of articular cartilage. Targeting the invasive phenotype of RASFs has therefore gained increasing attention, but the precise measurement of their invasive capacity and the evaluation of potential treatment effects constitute a challenge that needs to be addressed. This study used a novel in vitro invasion assay based on the breakdown of transepithelial electrical resistance to determine the course of fibroblast invasion into extracellular matrix.

View Article and Find Full Text PDF

The small ubiquitin-like modifier (SUMO)-1 is an important posttranslational regulator of different signaling pathways and involved in the formation of promyelocytic leukemia (PML) protein nuclear bodies (NBs). Overexpression of SUMO-1 has been associated with alterations in apoptosis, but the underlying mechanisms and their relevance for human diseases are not clear. Here, we show that the increased expression of SUMO-1 in rheumatoid arthritis (RA) synovial fibroblasts (SFs) contributes to the resistance of these cells against Fas-induced apoptosis through increased SUMOylation of nuclear PML protein and increased recruitment of the transcriptional repressor DAXX to PML NBs.

View Article and Find Full Text PDF

In osteoarthritis (OA), hepatocyte growth factor (HGF) is supposed to play a role in cartilage repair. Because the development of osteophytes is a major characteristic of OA and thought to be part of an attempted repair process, the purpose of this study was to determine whether HGF may be involved in osteophyte formation. HGF levels in synovial fluids from 41 patients assessed by enzyme immunosorbant assay were correlated with disease severity and osteophyte formation, evaluated by anteroposterior weight-bearing radiographs.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to correlate expression of CD44v5 in osteoarthritic synovium, cartilage, and synovial fluid with radiographical, histomorphological, and biochemical data.

Methods: Cartilage and synovia specimens of 27 patients with osteoarthritis were histomorphologically assessed according to Mankin and Pelletier, respectively. Extended weight-bearing antero-posterior radiographs were evaluated according to Kellgren and Ahlback.

View Article and Find Full Text PDF

Myeloma cells express basic fibroblast growth factor (bFGF), an angiogenic cytokine triggering marrow neovascularization in multiple myeloma (MM). In solid tumors and some lymphohematopoietic malignancies, angiogenic cytokines have also been shown to stimulate tumor growth via paracrine pathways. Since interleukin-6 (IL-6) is a potent growth and survival factor for myeloma cells, we have studied the effects of bFGF on IL-6 secretion by bone marrow stromal cells (BMSCs) and its potential reverse regulation in myeloma cells.

View Article and Find Full Text PDF

Emerging data suggest that urokinase-type plasminogen activator (UPA), beyond its role in pericellular proteolysis, may also act as a mitogen. We investigated the function of endogenous UPA in mediating the mitogenic effects of platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) on human vascular smooth muscle cells (SMC). Growth-arrested SMC constitutively expressed UPA, but UPA expression and secretion increased several times upon stimulation with either PDGF or bFGF.

View Article and Find Full Text PDF