Structural proteins like collagen and elastin are major constituents of the extracellular matrix (ECM). ECM degradation and remodeling in diseases significantly impact the microorganization of these structural proteins. Therefore, tracking the changes of collagen and elastin fiber morphological features within ECM impacted by disease progression could provide valuable insight into pathological processes such as tissue fibrosis and atherosclerosis.
View Article and Find Full Text PDFA femtosecond CARS-based nonlinear optical microscope was used to simultaneously image extracellular structural proteins and lipid-rich structures within intact aortic tissue obtained from myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits (WHHLMI). Clear differences in the NLO microscopic images were observed between healthy arterial tissue and regions dominated by atherosclerotic lesions. In the current ex-vivo study, we present a single parameter based on intensity changes derived from multi-channel NLO image to classify plaque burden within the vessel.
View Article and Find Full Text PDFLabel-free imaging of bulk arterial tissue is demonstrated using a multimodal nonlinear optical microscope based on a photonic crystal fiber and a single femtosecond oscillator operating at 800 nm. Colocalized imaging of extracellular elastin fibers, fibrillar collagen, and lipid-rich structures within aortic tissue obtained from atherosclerosis-prone myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits is demonstrated through two-photon excited fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering, respectively. These images are shown to differentiate healthy arterial wall, early atherosclerotic lesions, and advanced plaques.
View Article and Find Full Text PDFA lack of noninvasive tools to quantify edema has limited our understanding of burn wound edema pathophysiology in a clinical setting. Near-infrared spectroscopy (NIR) is a new noninvasive tool able to measure water concentration/edema in tissue. The purpose of this study was to determine whether NIR could detect water concentration changes or edema formation in acute partial-thickness burn injuries.
View Article and Find Full Text PDF