Chemical fumigation and biofumigation are used to reduce soil-borne diseases in agricultural production systems; however, non-targeted soil microorganisms may also be affected. This study compared the effects of chemical fumigation, either used alone or combined with an organic amendment, and biofumigation on soil bacterial community diversity and composition under controlled conditions over 160 days. Treatments included: fumigation with chloropicrin (CP), fumigation with metam sodium used alone (MS) or combined with barley plant residues (MSBR); biofumigation with mustard plant residues; addition of barley plant residues; and untreated control.
View Article and Find Full Text PDFBiofumigation has been proposed as an alternative to soil fumigation to manage soil-borne diseases including potato early dying disease complex (PED). This study examined the potential of using brown mustard () biofumigation to manage PED under rain-fed potato production in New Brunswick, Canada in two trials between 2017 and 2020 in comparison with chloropicrin fumigation and a conventional barley rotation. Biofumigation increased yield in one trial, but not in a second trial where the potato crop experienced severe drought, whereas chloropicrin fumigation increased yield in both trials.
View Article and Find Full Text PDFComposts can be efficient organic amendments in potato culture as they can supply carbon and nutrients to the soil. However, more information is required on the effects of composts on denitrification and nitrous oxide emissions (NO) and emission-producing denitrifying communities. The effects of three compost amendments (municipal source separated organic waste compost (SSOC), forestry waste mixed with poultry manure compost (FPMC), and forestry residues compost (FRC)) on fungal and bacterial denitrifying communities and activity was examined in an agricultural field cropped to potatoes during the fall, spring, and summer seasons.
View Article and Find Full Text PDFIn eastern Canada, climate change-related warming and increased precipitation may alter winter snow cover, with potential consequences for soil conditions, nitrogen (N) cycling, and microbes. We conducted a 2-year field study aimed at determining the influence of snow removal, snow accumulation, and ambient snow in a potato-barley crop system on the abundance and expression of denitrifier (nirS, nirK, nosZ) and nitrifier (ammonium oxidizing archaeal (AOA) and bacterial (AOB) amoA) genes. Denitrifier and nitrifier abundance and expression results were compared to N2O production, soil atmosphere accumulation, and surface fluxes.
View Article and Find Full Text PDFThe quantification of groundwater NO loading associated with a specific field or set of management practices so that groundwater quality improvements can be objectively assessed is a major challenge. The magnitude and timing of NO export from a single agricultural field under raspberry ( L.) production were investigated by combining high-resolution groundwater NO concentration profiles (sampled using passive diffusion samplers) with Darcy's flux estimation at the field's down-gradient edge (based on field-measured hydraulic gradients and laboratory-estimated hydraulic conductivity).
View Article and Find Full Text PDFPotato cultivars vary in their tolerance to common scab; however, how they affect common scab-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp.
View Article and Find Full Text PDFSource nitrogen (N) identification of leachate or groundwater nitrate is complicated by N source mixing and N and oxygen (O) isotope fractionation caused by microbial N transformations. This experiment examined the δN and δO values in leachate collected over 1 yr at 55 cm below raspberry ( L.) plots receiving either synthetic fertilizer (FT) or poultry manure (MT).
View Article and Find Full Text PDFWidespread global changes, including rising atmospheric CO concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices.
View Article and Find Full Text PDFUnlabelled: Denitrifying fungi produce nitrous oxide (N2O), a potent greenhouse gas, as they generally lack the ability to convert N2O to dinitrogen. Contrary to the case for bacterial denitrifiers, the prevalence and diversity of denitrifying fungi found in the environment are not well characterized. In this study, denitrifying fungi were isolated from various soil ecosystems, and novel PCR primers targeting the P450nor gene, encoding the enzyme responsible for the conversion of nitric oxide to N2O, were developed, validated, and used to study the diversity of cultivable fungal denitrifiers.
View Article and Find Full Text PDFNitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season.
View Article and Find Full Text PDFTillage effects on denitrifier communities and nitrous oxide (N2O) emissions were mainly studied during the growing season. There is limited information for the non-growing season, especially in northern countries where winter has prolonged periods with sub-zero temperatures. The abundance and structure of the denitrifier community, denitrification gene expression and N2O emissions in fields under long-term tillage regimes [no-tillage (NT) vs conventional tillage (CT)] were assessed during two consecutive winters.
View Article and Find Full Text PDFClimate warming in temperate regions may lead to decreased soil temperatures over winter as a result of reduced snow cover. We examined the effects of temperatures near the freezing point on N(2)O emissions, denitrification, and on the abundance and structure of soil nitrifiers and denitrifiers. Soil microcosms supplemented with NO3 - and/or NO3 - plus red clover residues were incubated for 120 days at -4 °C, -1 °C, +2 °C or +5 °C.
View Article and Find Full Text PDFThe effect of glucose addition (0 and 500 μg C g(-1) soil) and nitrate (NO(3)) addition (0, 10, 50 and 500 μg NO(3)-N g(-1) soil) on nitric oxide reductase (cnorB) gene abundance and mRNA levels, and cumulative denitrification were quantified over 48 h in anoxic soils inoculated with Pseudomonas mandelii. Addition of glucose-C significantly increased cnorB(p) (P. mandelii and related species) mRNA levels and abundance compared with soil with no glucose added, averaged over time and NO(3) addition treatments.
View Article and Find Full Text PDFLands under riparian and agricultural management differ in soil properties, water content, plant species and nutrient content and are therefore expected to influence denitrifier communities, denitrification and nitrous oxide (N(2) O) emissions. Denitrifier community abundance, denitrifier community structure, denitrification gene expression and activity were quantified on three dates in a maize field and adjacent riparian zone. N(2) O emissions were greater in the agricultural zone, whereas complete denitrification to N(2) was greater in the riparian zone.
View Article and Find Full Text PDFIn agricultural cropping systems, crop residues are sources of organic carbon (C), an important factor influencing denitrification. The effects of red clover, soybean, and barley plant residues and of glucose on denitrifier abundance, denitrification gene mRNA levels, nitrous oxide (N(2)O) emissions, and denitrification rates were quantified in anoxic soil microcosms for 72 h. nosZ gene abundances and mRNA levels significantly increased in response to all organic carbon treatments over time.
View Article and Find Full Text PDFNitrate acts as an electron acceptor in the denitrification process. The effect of nitrate in the range of 0 to 1,000 mg/liter on Pseudomonas mandelii nirS, cnorB, and nosZ gene expression was studied, using quantitative reverse transcription-quantitative PCR. Denitrification activity was measured by using the acetylene blockage method and gas chromatography.
View Article and Find Full Text PDFPseudomonas mandelii liquid cultures were studied to determine the effect of pH and temperature on denitrification gene expression, which was quantified by quantitative reverse transcription-PCR. Denitrification was measured by the accumulation of nitrous oxide (N(2)O) in the headspace in the presence of acetylene. Levels of gene expression of nirS and cnorB at pH 5 were 539-fold and 6,190-fold lower, respectively, than the levels of gene expression for cells grown at pH 6, 7, and 8 between 4 h and 8 h.
View Article and Find Full Text PDFPure cultures of Pseudomonas mandelii were incubated with or without nitrate, which acts as a substrate and an electron acceptor for denitrification. Nitric oxide reductase (cnorB) gene expression was measured using a quantitative reverse transcription-PCR, and nitrous oxide emissions were measured by gas chromatography. P.
View Article and Find Full Text PDFThis study measured total bacterial and denitrifier community abundances over time in an agricultural soil cropped to potatoes (Solanum tuberosum L.) by using quantitative PCR. Samples were collected on 10 dates from spring to autumn and from three spatial locations: in the potato "hill" between plants (H), close to the plant (H(p)), and in the "furrow" (F).
View Article and Find Full Text PDF