Nine previously proposed segmentation evaluation metrics, targeting medical relevance, accounting for holes, and added regions or differentiating over- and under-segmentation, were compared with 24 traditional metrics to identify those which better capture the requirements for clinical segmentation evaluation. Evaluation was first performed using 2D synthetic shapes to highlight features and pitfalls of the metrics with known ground truths (GTs) and machine segmentations (MSs). Clinical evaluation was then performed using publicly-available prostate images of 20 subjects with MSs generated by 3 different deep learning networks (DenseVNet, HighRes3DNet, and ScaleNet) and GTs drawn by 2 readers.
View Article and Find Full Text PDFProstate segmentation in multiparametric magnetic resonance imaging (mpMRI) can help to support prostate cancer diagnosis and therapy treatment. However, manual segmentation of the prostate is subjective and time-consuming. Many deep learning monomodal networks have been developed for automatic whole prostate segmentation from T2-weighted MR images.
View Article and Find Full Text PDF