Publications by authors named "Bernholc J"

We present the theory, implementation, and benchmarking of a real-time time-dependent density functional theory (RT-TDDFT) module within the RMG code, designed to simulate the electronic response of molecular systems to external perturbations. Our method offers insights into nonequilibrium dynamics and excited states across a diverse range of systems, from small organic molecules to large metallic nanoparticles. Benchmarking results demonstrate excellent agreement with established TDDFT implementations and showcase the superior stability of our time integration algorithm, enabling long-term simulations with minimal energy drift.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring how to synthesize graphene nanoribbons (GNRs) of specific shapes and sizes using specially designed fluorine-bearing molecular precursors, which are important for electronic applications.
  • The study focuses on the optimal temperature needed for the deposition of a new precursor (CHFI) that leads to the formation of GNRs on gold substrates (Au(111)), revealing that lower temperatures hinder adsorption.
  • Through techniques like scanning tunneling microscopy and X-ray photoelectron spectroscopy, the research explains the growth mechanisms of GNRs and sets the groundwork for creating them on nonmetallic materials in the future.
View Article and Find Full Text PDF

Dielectric polymers possessing high energy and low losses are of great interest for electronic and electric devices and systems. Nanocomposites in which high dielectric constant (high-K) nanofillers at high loading (>10 vol%) are admixed with polymer matrix have been investigated for decades, aiming at enhancing the dielectric performance, but with limited success. In 2017, it is discovered that reducing nanofiller loading to less than 0.

View Article and Find Full Text PDF

The interconversion between electrical and mechanical energies is pivotal to ferroelectrics to enable their applications in transducers, actuators and sensors. Ferroelectric polymers exhibit a giant electric-field-induced strain (>4.0%), markedly exceeding the actuation strain (≤1.

View Article and Find Full Text PDF

Electromechanical (EM) coupling-the conversion of energy between electric and mechanical forms-in ferroelectrics has been used for a broad range of applications. Ferroelectric polymers have weak EM coupling that severely limits their usefulness for applications. We introduced a small amount of fluorinated alkyne (FA) monomers (<2 mol %) in relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (PVDF-TrFE-CFE) terpolymer that markedly enhances the polarization change with strong EM coupling while suppressing other polarization changes that do not contribute to it.

View Article and Find Full Text PDF

Understanding the reaction mechanisms of dehydrogenative C-C coupling is the key to directed formation of π-extended polycyclic aromatic hydrocarbons. Here we utilize isotopic labeling to identify the exact pathway of cyclodehydrogenation reaction in the on-surface synthesis of model atomically precise graphene nanoribbons (GNRs). Using selectively deuterated molecular precursors, we grow seven-atom-wide armchair GNRs on a Au(111) surface that display a specific hydrogen/deuterium (H/D) pattern with characteristic Raman modes.

View Article and Find Full Text PDF

More than a decade of research on the electrocaloric (EC) effect has resulted in EC materials and EC multilayer chips that satisfy a minimum EC temperature change of 5 K required for caloric heat pumps. However, these EC temperature changes are generated through the application of high electric fields (close to their dielectric breakdown strengths), which result in rapid degradation and fatigue of EC performance. Here we report a class of EC polymer that exhibits an EC entropy change of 37.

View Article and Find Full Text PDF

The mechanism of the recently discovered enhancement of dielectric properties in dilute polymer-nanoparticle composites is investigated by experiments and computer simulations. We show that the weakening of the hydrogen bonds between the nanoparticles and the polymer chains reduces the polymer-nanoparticle composite's dielectric enhancement. The subsequent multiscale simulations investigate the attachment of solvated highly dipolar polymers to oxide nanoparticles, which leads to deposition of nanoparticle-polymer blobs during solution casting and a reduced density compared to a neat polymer film.

View Article and Find Full Text PDF

Both experimental results and theoretical models suggest the decisive role of the filler-matrix interfaces on the dielectric, piezoelectric, pyroelectric, and electrocaloric properties of ferroelectric polymer nanocomposites. However, there remains a lack of direct structural evidence to support the so-called interfacial effect in dielectric nanocomposites. Here, a chemical mapping of the interfacial coupling between the nanofiller and the polymer matrix in ferroelectric polymer nanocomposites by combining atomic force microscopy-infrared spectroscopy (AFM-IR) with first-principles calculations and phase-field simulations is provided.

View Article and Find Full Text PDF

Relaxor ferroelectrics exhibit outstanding dielectric, electromechanical and electrocaloric properties, and are the materials of choice for acoustic sensors, solid-state coolers, transducers and actuators. Despite more than five decades of intensive study, relaxor ferroelectrics remain one of the least understood material families in ferroelectric materials and condensed matter physics. Here, by combining X-ray diffraction, atomic force microscope infrared spectroscopy and first-principles calculations, we reveal that the relaxor behaviour of ferroelectric polymers originates from conformational disorder, completely different from classic perovskite relaxors, which are typically characterized by chemical disorder.

View Article and Find Full Text PDF

Solid-state narrow-band light emitters are on-demand for quantum optoelectronics. Current approaches based on defect engineering in low-dimensional materials usually introduce a broad range of emission centers. Here, we report narrow-band light emission from covalent heterostructures fused to the edges of graphene nanoribbons (GNRs) by controllable on-surface reactions from molecular precursors.

View Article and Find Full Text PDF

Phonons are fundamental to understanding the dynamical and thermal properties of materials. However, first-principles phonon calculations are usually limited to moderate-size systems due to their high computational requirements. We implemented the finite displacement method (FDM) in the highly parallel real-space multigrid (RMG) suite of codes to study phonon properties.

View Article and Find Full Text PDF

The influence of substrate steps on the bottom-up synthesis of atomically precise graphene nanoribbons (GNRs) on an Au(111) surface is investigated. Straight surface steps are found to promote the assembly of long and compact arrays of polymers with enhanced interchain π-π stacking interactions, which create a steric hindrance effect on cyclodehydrogenation to suppress the H passivation of polymer ends. The modified two-stage growth process results in periodic arrays of GNRs with doubled average length near step edges.

View Article and Find Full Text PDF

Piezoelectricity-the direct interconversion between mechanical and electrical energies-is usually remarkably enhanced at the morphotropic phase boundary of ferroelectric materials, which marks a transition region in the phase diagram of piezoelectric materials and bridges two competing phases with distinct symmetries. Such enhancement has enabled the recent development of various lead and lead-free piezoelectric perovskites with outstanding piezoelectric properties for use in actuators, transducers, sensors and energy-harvesting applications. However, the morphotropic phase boundary has never been observed in organic materials, and the absence of effective approaches to improving the intrinsic piezoelectric responses of polymers considerably hampers their application to flexible, wearable and biocompatible devices.

View Article and Find Full Text PDF

Electrical contact to low-dimensional (low-D) materials is a key to their electronic applications. Traditional metal contacts to low-D semiconductors typically create gap states that can pin the Fermi level (E). However, low-D metals possessing a limited density of states at E can enable gate-tunable work functions and contact barriers.

View Article and Find Full Text PDF

In order to increase the dielectric constants of polymer-based dielectrics, composite approaches, in which inorganic fillers with much higher dielectric constants are added to the polar polymer matrix, have been investigated. However, high dielectric constant fillers cause high local electric fields in the polymer, resulting in a large reduction of the electric breakdown strength. We show that a significant increase in the dielectric constant can be achieved in polyetherimide nanocomposites with nanofillers whose dielectric constant can be similar to that of the matrix.

View Article and Find Full Text PDF

Copper is an essential nutrient required for many biological processes involved in primary metabolism, but free copper is toxic due to its ability to catalyze formation of free radicals. To prevent toxic effects, in the cell copper is bound to proteins and low molecular weight compounds, such as glutathione, at all times. The widely used chemotherapy agent cisplatin is known to bind to copper-transporting proteins, including copper chaperone Atox1.

View Article and Find Full Text PDF

In the bottom-up synthesis of graphene nanoribbons (GNRs) from self-assembled linear polymer intermediates, surface-assisted cyclodehydrogenations usually take place on catalytic metal surfaces. Here we demonstrate the formation of GNRs from quasi-freestanding polymers assisted by hole injections from a scanning tunnelling microscope (STM) tip. While catalytic cyclodehydrogenations typically occur in a domino-like conversion process during the thermal annealing, the hole-injection-assisted reactions happen at selective molecular sites controlled by the STM tip.

View Article and Find Full Text PDF

Functionalized carbon nanotubes have great potential for nanoscale sensing applications, yet many aspects of their sensing mechanisms are not understood. Here, two paradigmatic sensor configurations for detection of biologically important molecules are investigated through ab initio calculations: a non-covalently functionalized nanotube for glucose detection and a covalently functionalized nanotube for ethylene detection. Glucose and ethylene control key life processes of humans and plants, respectively, despite of their structural and chemical simplicity.

View Article and Find Full Text PDF

Copper-containing nitrite reductases (CuNiRs) catalyze the reduction of nitrite to nitric oxide, a key step in the denitrification process that maintains balance between organic and inorganic nitrogen. Despite their importance, their functioning is not well understood. In this work, we carry out first-principles calculations and show that the available structural data are consistent only with a single mechanism.

View Article and Find Full Text PDF

We demonstrate a controllable surface-coordinated linear polymerization of long-chain poly(phenylacetylenyl)s that are self-organized into a "circuit-board" pattern on a Cu(100) surface. Scanning tunneling microscopy/spectroscopy (STM/S) corroborated by ab initio calculations, reveals the atomistic details of the molecular structure, and provides a clear signature of electronic and vibrational properties of the poly(phenylacetylene)s chains. Notably, the polymerization reaction is confined epitaxially to the copper lattice, despite a large strain along the polymerized chain that subsequently renders it metallic.

View Article and Find Full Text PDF

Self-assembled monolayers are the basis for molecular nanodevices, flexible surface functionalization, and dip-pen nanolithography. Yet self-assembled monolayers are typically created by a rather inefficient process involving thermally driven attachment reactions of precursor molecules to a metal surface, followed by a slow and defect-prone molecular reorganization. Here we demonstrate a nonthermal, electron-induced approach to the self-assembly of phenylacetylene molecules on gold that allows for a previously unachievable attachment of the molecules to the surface through the alkyne group.

View Article and Find Full Text PDF

Using first-principles simulations, we identify the microscopic origin of the nonlinear dielectric response and high energy density of polyvinylidene-fluoride-based polymers as a cooperative transition path that connects nonpolar and polar phases of the system. This path explores a complex torsional and rotational manifold and is thermodynamically and kinetically accessible at relatively low temperatures. Furthermore, the introduction of suitable copolymers significantly alters the energy barriers between phases providing tunability of both the energy density and the critical fields.

View Article and Find Full Text PDF

α-synuclein (aS) is a natively unfolded pre-synaptic protein found in all Parkinson's disease patients as the major component of fibrillar plaques. Metal ions, and especially Cu(II), have been demonstrated to accelerate aggregation of aS into fibrillar plaques, the precursors to Lewy bodies. In this work, copper binding to aS is investigated by a combination of quantum and molecular mechanics simulations.

View Article and Find Full Text PDF