The peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative bacteria, these enzymes are regulated by outer-membrane tethered lipoproteins.
View Article and Find Full Text PDFCold atmospheric plasma (CAP) enables painless tissue treatment by producing reactive species including excited molecules and charged particles and is of great interest for medical applications. Medical CAP sources work in contact with air at ambient pressure, resulting in the generation of substantial amounts of reactive oxygen and nitrogen radicals. These radicals have a significant influence on cellular biochemistry, are crucial components of the immune system, and play a central role in wound therapy.
View Article and Find Full Text PDFThe peptidoglycan (PG) cell wall is critical for bacterial growth and survival and is a primary antibiotic target. MreD is an essential accessory factor of the Rod complex, which carries out PG synthesis during elongation, yet little is known about how MreD facilitates this process. Here, we present the cryo-electron microscopy structure of MreD in complex with another essential Rod complex component, MreC.
View Article and Find Full Text PDFUnlabelled: encodes the beta-lactamase AmpC, which promotes resistance to beta-lactam antibiotics. Expression of is induced by anhydro-muropeptides (AMPs) released from the peptidoglycan (PG) cell wall upon beta-lactam treatment. AmpC can also be induced via genetic inactivation of PG biogenesis factors such as the endopeptidase DacB that cleaves PG crosslinks.
View Article and Find Full Text PDFThe interaction of free cationic silicon oxide clusters, Si O ( = 2-5, ≥ ), with dilute water vapor, was investigated in a flow tube reactor. Product mass distributions indicate cluster size-dependent dissociative water adsorption. To probe the structure and vibrational spectra of the resulting Si O H ( = 2-4) clusters, we employed infrared multiple photon dissociation spectroscopy and density functional theory calculations.
View Article and Find Full Text PDFThe cell envelope fortifies bacterial cells against antibiotics and other insults. Species in the Mycobacteriales order have a complex envelope that includes an outer layer of mycolic acids called the mycomembrane (MM) and a cell wall composed of peptidoglycan and arabinogalactan. This envelope architecture is unique among bacteria and contributes significantly to the virulence of pathogenic Mycobacteriales like Mycobacterium tuberculosis.
View Article and Find Full Text PDFBacteria surround themselves with complex cell envelopes to maintain their integrity and protect against external insults. The envelope of Gram-negative organisms is multilayered, with two membranes sandwiching the periplasmic space that contains the peptidoglycan cell wall. Understanding how this complicated surface architecture is assembled during cell growth and division is a major fundamental problem in microbiology.
View Article and Find Full Text PDFProtein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein -fatty acylation in , termed protein -mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein -mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides.
View Article and Find Full Text PDFStaphylococcus aureus is a Gram-positive pathogen responsible for antibiotic-resistant infections. To identify vulnerabilities in cell envelope biogenesis that may overcome resistance, we enriched for S. aureus transposon mutants with defects in cell surface integrity or cell division by sorting for cells that stain with propidium iodide or have increased light-scattering properties, respectively.
View Article and Find Full Text PDFUnlabelled: Single-strand RNA (ssRNA) and single-strand DNA phages elicit host lysis using a single gene, in each case designated as . Of the 11 identified Sgls, three have been shown to be specific inhibitors of different steps in the pathway that supplies lipid II to the peptidoglycan (PG) biosynthesis machinery. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics.
View Article and Find Full Text PDFMany bacterial surface glycans such as the peptidoglycan (PG) cell wall are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting carrier is distributed among competing pathways has remained unclear. Here we describe the isolation of hyperactive variants of Pseudomonas aeruginosa MraY, the enzyme that forms the first lipid-linked PG precursor.
View Article and Find Full Text PDFThe interaction of free manganese oxide clusters, MnO ( = 1-9, = 0-12), with formic acid was studied infrared multiple-photon dissociation (IR-MPD) spectroscopy together with calculations using density functional theory (DFT). Clusters containing only one Mn atom, such as MnO and MnO, bind formic acid as an intact molecule in both the - and -configuration. In contrast, all clusters containing two or more manganese atoms deprotonate the acid's hydroxyl group.
View Article and Find Full Text PDFGram-negative bacteria are surrounded by two membranes. A special feature of the outer membrane is its asymmetry. It contains lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet.
View Article and Find Full Text PDFUntil recently only 11 distinct Sgls (single gene lysis proteins) have been experimentally identified. Of these, three have been shown to be specific inhibitors of different steps in the pathway that supplies Lipid II to the peptidoglycan (PG) biosynthesis machinery: Qβ A inhibits MurA, ϕX174 E inhibits MraY, and Lys from coliphage M inhibits MurJ. These Sgls have been called "protein antibiotics" because the lytic event is a septal catastrophe indistinguishable from that caused by cell wall antibiotics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2023
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure.
View Article and Find Full Text PDFMany bacterial surface glycans such as the peptidoglycan (PG) cell wall, O-antigens, and capsules are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting lipid carrier is effectively distributed among competing pathways has remained unclear for some time. Here, we describe the isolation and characterization of hyperactive variants of MraY, the essential and conserved enzyme catalyzing the formation of the first lipid-linked PG precursor called lipid I.
View Article and Find Full Text PDFThe peptidoglycan (PG) cell wall protects bacteria against osmotic lysis and determines cell shape, making this structure a key antibiotic target. Peptidoglycan is a polymer of glycan chains connected by peptide crosslinks, and its synthesis requires precise spatiotemporal coordination between glycan polymerization and crosslinking. However, the molecular mechanism by which these reactions are initiated and coupled is unclear.
View Article and Find Full Text PDFThe peptidoglycan (PG) cell wall produced by the bacterial division machinery is initially shared between the daughters and must be split to promote cell separation and complete division. In gram-negative bacteria, enzymes that cleave PG called amidases play major roles in the separation process. To prevent spurious cell wall cleavage that can lead to cell lysis, amidases like AmiB are autoinhibited by a regulatory helix.
View Article and Find Full Text PDFis a gram-positive pathogen responsible for life-threatening infections that are difficult to treat due to antibiotic resistance. The identification of new vulnerabilities in essential processes like cell envelope biogenesis represents a promising avenue towards the development of anti-staphylococcal therapies that overcome resistance. To this end, we performed cell sorting-based enrichments for mutants with defects in envelope integrity and cell division.
View Article and Find Full Text PDFGram-negative bacteria surround their cytoplasmic membrane with a peptidoglycan (PG) cell wall and an outer membrane (OM) with an outer leaflet composed of lipopolysaccharide (LPS). This complex envelope presents a formidable barrier to drug entry and is a major determinant of the intrinsic antibiotic resistance of these organisms. The biogenesis pathways that build the surface are also targets of many of our most effective antibacterial therapies.
View Article and Find Full Text PDFUnlabelled: The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure.
View Article and Find Full Text PDFBacteria of the order Corynebacteriales including pathogens such as and are characterized by their complex, multi-layered envelope. In addition to a peptidoglycan layer, these organisms possess an additional polysaccharide layer made of arabinogalactan and an outer membrane layer composed predominantly of long-chain fatty acids called mycolic acids. This so-called mycolata envelope structure is both a potent barrier against antibiotic entry into cells and a target of several antibacterial therapeutics.
View Article and Find Full Text PDF