Publications by authors named "Bernhard Walfort"

Fast neutron imaging is a nondestructive technique for large-scale objects such as nuclear fuel rods. However, present detectors are based on conventional phosphors (typically microcrystalline ZnS:Cu) that have intrinsic drawbacks, including light scattering, γ-ray sensitivity, and afterglow. Fast neutron imaging with colloidal nanocrystals (NCs) was demonstrated to eliminate light scattering.

View Article and Find Full Text PDF

The fast neutron imaging technique with recoil proton detection harbors significant potential for imaging of thick, large-scale objects containing high-Z elements. However, the challenge to find efficient fast neutron scintillators with high spatial resolution is ongoing. The list of requirements for such scintillators is long and demanding: a proton-rich, scattering-free material combining high light yield with the absence of light reabsorption.

View Article and Find Full Text PDF

We performed a study of the initial and long term light yield of different scintillation screen mixtures for neutron imaging during constant neutron irradiation. We evaluated the light yield during different neutron flux levels as well as at different temperatures. As high frame rate imaging is a topic of interest in the neutron imaging community, the decay characteristics of scintillation screens are of interest as well.

View Article and Find Full Text PDF
Article Synopsis
  • Fast neutrons are effective for imaging large objects due to their high penetration ability, but current detection methods face inefficiencies.
  • Traditional scintillators like ZnS:Cu have drawbacks, such as significant light scattering and long afterglow, necessitating alternative solutions.
  • Colloidal nanocrystals (NCs) in hydrogen-dense solvents demonstrate improved performance for fast neutron imaging, showing brighter light output and better spatial resolution with shorter afterglow, making them a promising option for this technique.
View Article and Find Full Text PDF

The synthesis, chemical and physical properties of [{AgOCCHOMe} ] () and [{AgOCCHOMe(PPh)} ] () are reported. Consecutive reaction of AgNO with HOCCHOMe gave , which upon treatment with PPh produced . Coordination compound forms a 1D coordination polymer in the solid state as evidenced by single crystal X-ray structure analysis.

View Article and Find Full Text PDF

The preparation of the shape-persistent carbosilane-functionalized porphyrins H2TPP(4-SiRR'Me)4, Zn(II)-TPP(4-SiRR'Me)4 (R = R' = Me, CH2CH=CH2, CH2CH2CH2OH; R = Me, R' = CH2CH=CH2, CH2CH2CH2OH; TPP = tetraphenyl porphyrin), H2TPP(4-Si(C6H4-1,4-SiRR'Me)3)4, and Zn(II)-TPP(4-Si(C6H4-1,4-SiRR'Me)3)4 (R = R' = Me, CH2CH=CH2; R = Me, R' = CH2CH[double bond, length as m-dash]CH2) using the Lindsey condensation methodology is described. For a series of five samples their structures in the solid state were determined by single crystal X-ray structure analysis. The appropriate 0th and 1st generation porphyrin-based 1,4-phenylene carbosilanes form 2D and 3D supramolecular network structures, primarily controlled by either π-π interactions (between pyrrole units and neighboring phenylene rings) or directional molecular hydrogen recognition and zinc-oxygen bond formation in the appropriate hydroxyl-functionalized molecules.

View Article and Find Full Text PDF

Metal-organics [((RO)(3)P)(m)CuO(2)CCF(3)] (R = CH(3): 11a, m = 1; 11b, m = 2; 11c, m = 3. R = CH(2)CH(3): 12a, m = 1; 12b, m = 2; 12c, m = 3. R = CH(2)CF(3): 13a, m = 1; 13b, m = 2; 13c, m = 3) are either accessible by the reaction of [((RO)(3)P)(m)CuCl] (R = CH(3): 5a, m = 1; 5b, m = 2; 5c, m = 3.

View Article and Find Full Text PDF

Two mononuclear bis(oxamato) complexes with the formula [nBu4N]2[M(2,3-acbo)] (M=Ni (), Cu (), with acbo=anthra-9,10-chinone-2,3-bis(oxamato) have been synthesized starting from symmetric diethyl N,N'-anthra-9,10-chinone-2,3-bis(oxamate) (, 2,3-acboH2Et2). The crystal structures of and have been determined, verifying that the transition metal ions are eta4(kappa2N,kappa2O) coordinated by the [2,3-acbo]4- ligands. Using the asymmetric diethyl N,N'-anthra-9,10-chinone-1,2-bis(oxamate) (, 1,2-acboH2Et2) leads, under otherwise identical reaction conditions, to the novel bis(oxamato) complex [(n)Bu4N]2[Ni(1,2-acbo)] () whereby in the case of Cu(II) the derivate [nBu4N]2[Cu(aibo)2] () (aibo=anthra[1,2-d]-(imidazole-2-carboxylato)-6,11-dione) has been obtained.

View Article and Find Full Text PDF

A series of stilbeneboronate pinacol cyclic esters, containing none to three nitro groups, have been synthesized by various olefination reactions and characterized by X-ray single-crystal structure analysis. A stilbeneboronate ester bearing electron-acceptor groups experiences transition to a push-pull pi-electron system upon complexation with one fluoride ion at the boron atom. The UV-vis absorption maxima of the presented nitro-substituted stilbeneboronate esters are red-shifted upon addition of fluoride ions, indicating this binding event.

View Article and Find Full Text PDF

Activation of different benzophenone derivatives with triflic anhydride for electrophilic aromatic substitution of 5-phenylbarbituric acids leads to regioselective formation of the ortho-substituted product. The resulting triphenylmethylium salt can be isolated when the Michlers ketone is used. More electrophilic cations form cyclic enol ethers such as 1-n-butyl-9,9-diaryl-1,9-dihydro-10-oxa-1,3-diazaphenanthrene-2,4-diones.

View Article and Find Full Text PDF

Chiral nitroanilines containing 1,2- or 1,3-diol functionalities have been synthesized by nucleophilic aromatic substitution of fluoronitroanilines with 1-aminopropane-2,3-diols and 2-aminopropane-1,3-diol in the melt. X-ray structure analyses confirm retention of the configuration of the chiral center. The novel chromophores are suitable to link reversibly to various substituted arylboronic acids which allows the construction of new solvatochromic sensor molecules suitable to response to solvent and anion coordination by fluoride.

View Article and Find Full Text PDF

A series of unsymmetrical 1,2-bis(phosphino)ethanes R(2)PCH(2)CH(2)PR'(2) and 1-arsino-2-phosphinoethanes R(2)AsCH(2)CH(2)PR'(2) mainly with bulky substituents R and R' were prepared from the cyclic sulfate by stepwise cleavage of the carbon-oxygen bonds by LiPR(2) and LiPR'(2) or LiAsR(2) and LiPR'(2), respectively. Analogously, racemic mixtures of R(2)PCH(2)CH(Me)PPh(2)(R =iPr, Cy ) as well as the enantiomers (R)-, (R)- and (R)-tBu(2)PCH(2)CH(Me)PPh(2)(R)- were obtained from the corresponding unsymmetrical cyclic sulfates and (S)-. On a similar route, the racemates of the 1,3-bis(phosphino)propanes R(2)PCH(2)CH(2)CH(Me)PPh(2)(R =iPr, tBu ), optically pure (R)- and (S,S)-iPr(2)PCH(Me)CH(2)CH(Me)PPh(2)(S,S)- were prepared.

View Article and Find Full Text PDF

Through isoelectronic replacement of the oxygen atoms in SO ions by one CH and three NtBu groups one arrives formally at the dianion H CS(NtBu) , which has been isolated for the first time in the form of the sulfur(VI) ylide complex [(tmeda) Li {CH S(NtBu) }]. Deprotonation of the S-bonded methyl group in the triimidosulfonate MeS(NtBu) ion provides facile access in good yields. Hydrolysis favors the formation of the triimidosulfate [{(tmeda)Li [OS(NtBu) ]} ] and methane, and not, as one might expect, diimidomethylenesulfate and the amine.

View Article and Find Full Text PDF