Microorganisms in marine subsurface sediments substantially contribute to global biomass. Sediments warmer than 40°C account for roughly half the marine sediment volume, but the processes mediated by microbial populations in these hard-to-access environments are poorly understood. We investigated microbial life in up to 1.
View Article and Find Full Text PDFMarine sediments host an unexpectedly large microbial biosphere, suggesting unique microbial mechanisms for surviving burial and slow metabolic turnover. Although dormancy is generally considered an important survival strategy, its specific role in subsurface sediments remains unclear. We quantified dormant bacterial endospores in 331 marine sediment samples from diverse depositional types and geographical origins.
View Article and Find Full Text PDFBreviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle. Here we report the cultivation of Lenisia limosa, gen.
View Article and Find Full Text PDFSubsurface microbial life contributes significantly to biogeochemical cycling, yet it remains largely uncharacterized, especially its archaeal members. This 'microbial dark matter' has been explored by recent studies that were, however, mostly based on DNA sequence information only. Here, we use diverse techniques including ultrastuctural analyses to link genomics to biology for the SM1 Euryarchaeon lineage, an uncultivated group of subsurface archaea.
View Article and Find Full Text PDFEffects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ∼0.
View Article and Find Full Text PDF