Publications by authors named "Bernhard Riecke"

This article examines the choices between sitting and standing in virtual reality (VR) experiences, addressing conflicts, challenges, and opportunities. It explores issues such as the risk of motion sickness in stationary users and virtual rotations, the formation of mental models, consistent authoring, affordances, and the integration of embodied interfaces for enhanced interactions. Furthermore, it delves into the significance of multisensory integration and the impact of postural mismatches on immersion and acceptance in VR.

View Article and Find Full Text PDF

Vection is typically defined as the embodied illusion of self-motion in the absence of real physical movement through space. Vection can occur in real-life situations (e.g.

View Article and Find Full Text PDF

Physical walking is often considered the gold standard for VR travel whenever feasible. However, limited free-space walking areas in the real-world do not allow exploring larger-scale virtual environments by actual walking. Therefore, users often require handheld controllers for navigation, which can reduce believability, interfere with simultaneous interaction tasks, and exacerbate adverse effects such as motion sickness and disorientation.

View Article and Find Full Text PDF

Previous research has shown the positive effects of exposure to real and virtual nature. To investigate how such benefits might generalize to ever-more-prevalent virtual workplaces, we examined the effects of the absence or presence of virtual plants in an office environment in Virtual Reality (VR) on users' cognitive performance and psychological well-being. The results of our user study with 39 participants show that in the presence of virtual plants, participants performed significantly better in both short-term memory and creativity tasks.

View Article and Find Full Text PDF

Continuous locomotion in VR provides uninterrupted optical flow, which mimics real-world locomotion and supports path integration . However, optical flow limits the maximum speed and acceleration that can be effectively used without inducing cybersickness. In contrast, teleportation provides neither optical flow nor acceleration cues, and users can jump to any length without increasing cybersickness.

View Article and Find Full Text PDF

The concept of transformative experience (TE) has been widely explored by several disciplines from philosophy to neurobiology, and in different domains, from the spiritual to the educational one. This attitude has engendered heterogeneous models to explain this phenomenon. However, a consistent and clear understanding of this construct remains elusive.

View Article and Find Full Text PDF

Using standard handheld interfaces for VR locomotion may not provide a believable self-motion experience and can contribute to unwanted side effects such as motion sickness, disorientation, or increased cognitive load. This paper demonstrates how using a seated leaning-based locomotion interface -HeadJoystick- in VR ground-based navigation affects user experience, usability, and performance. In three within-subject studies, we compared controller (touchpad/thumbstick) with a more embodied interface ("HeadJoystick") where users moved their head and/or leaned in the direction of desired locomotion.

View Article and Find Full Text PDF

Self-transcendence has been characterized as a decrease in self-saliency (ego disillusionment) and increased connection, and has been growing in research interest in the past decade. Several measures have been developed and published with some degree of psychometric validity and reliability. However, to date, there has been no review systematically describing, contrasting, and evaluating the different methodological approaches toward measuring self-transcendence including questionnaires, neurological and physiological measures, and qualitative methods.

View Article and Find Full Text PDF

Telepresence robots allow users to be spatially and socially present in remote environments. Yet, it can be challenging to remotely operate telepresence robots, especially in dense environments such as academic conferences or workplaces. In this paper, we primarily focus on the effect that a speed control method, which automatically slows the telepresence robot down when getting closer to obstacles, has on user behaviors.

View Article and Find Full Text PDF

Flying in virtual reality (VR) using standard handheld controllers can be cumbersome and contribute to unwanted side effects such as motion sickness and disorientation. This article investigates a novel hands-free flying interface-HeadJoystick, where the user moves their head similar to a joystick handle toward the target direction to control virtual translation velocity. The user sits on a regular office swivel chair and rotates it physically to control virtual rotation using 1:1 mapping.

View Article and Find Full Text PDF

Research has shown that consistent stereoscopic information improves the vection (i.e. illusions of self-motion) induced in stationary observers.

View Article and Find Full Text PDF

Walking has always been considered as the gold standard for navigation in Virtual Reality research. Though full rotation is no longer a technical challenge, physical translation is still restricted through limited tracked areas. While rotational information has been shown to be important, the benefit of the translational component is still unclear with mixed results in previous work.

View Article and Find Full Text PDF

"Awe" is a category of emotion within the spectrum of self-transcendent experiences. Awe has wellness benefits, with feelings of social interconnectivity and increased life satisfaction. However, awe experiences remain rare in our everyday lives, and rarer in lab environments.

View Article and Find Full Text PDF

Practices such as mindfulness, introspection, and self-reflection are known to have positive short and long-term effects on health and well-being. However, in today's modern, fast-paced, technological world tempted by distractions these practices are often hard to access and relate to a broader audience. Consequently, technologies have emerged that mediate personal experiences, which is reflected in the high number of available applications designed to elicit positive changes.

View Article and Find Full Text PDF

Typically it takes up to 10 seconds or more to induce a visual illusion of self-motion ("vection"). However, for this vection to be most useful in virtual reality and vehicle simulation, it needs to be induced quickly, if not immediately. This study examined whether vection onset latency could be reduced towards zero using visual display manipulations alone.

View Article and Find Full Text PDF

Imagined perspective switches are notoriously difficult, a fact often ascribed to sensorimotor interference between one's to-be-imagined versus actual orientation. Here, we demonstrate similar interference effects, even if participants know they are in a remote environment with unknown spatial relation to the learning environment. Participants learned 15 target objects irregularly arranged in an office from one orientation (0°, 120°, or 240°).

View Article and Find Full Text PDF

Sounds are thought to contribute to the perceptions of self-motion, often via higher-level, cognitive mechanisms. This study examined whether illusory self-motion (i.e.

View Article and Find Full Text PDF

In a virtual point-to-origin task, participants seem to show different response patterns and underlying strategies for orientation, such as "turner" and "non-turner" response patterns. Turners respond as if succeeding to update simulated heading changes, and non-turners respond as if failing to update their heading, resulting in left-right hemisphere errors. We present two other response patterns, "non-movers" and "spinners," that also appear to result in failures to update heading.

View Article and Find Full Text PDF

Self-motion can facilitate perspective switches and "automatic spatial updating" and help reduce disorientation in applications like virtual reality (VR). However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion ("circular vection") can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously learned objects.

View Article and Find Full Text PDF

Illusions of self-movement (vection) can be used in virtual reality (VR) and other applications to give users the embodied sensation that they are moving when physical movement is unfeasible or too costly. Whereas a large body of vection literature studied how various parameters of the presented visual stimulus affect vection, little is known how different display types might affect vection. As a step toward addressing this gap, we conducted three experiments to compare vection and usability parameters between commonly used VR displays, ranging from stereoscopic projection and 3D TV to high-end head-mounted display (HMD, NVIS SX111) and recent low-cost HMD (Oculus Rift).

View Article and Find Full Text PDF

The occurrence of visually induced motion sickness has been frequently linked to the sensation of illusory self-motion (vection), however, the precise nature of this relationship is still not fully understood. To date, it is still a matter of debate as to whether vection is a necessary prerequisite for visually induced motion sickness (VIMS). That is, can there be VIMS without any sensation of self-motion? In this paper, we will describe the possible nature of this relationship, review the literature that addresses this relationship (including theoretical accounts of vection and VIMS), and offer suggestions with respect to operationally defining and reporting these phenomena in future.

View Article and Find Full Text PDF

Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions.

View Article and Find Full Text PDF

This experiment investigated the effect of walking without optic flow on subsequent vection induction and strength. Two groups of participants walked for 5 min (either wearing Ganzfeld goggles or with normal vision) prior to exposure to a vection-inducing stimulus. We then measured the onset latency and strength of vection induced by a radially expanding pattern of optic flow.

View Article and Find Full Text PDF

This experiment investigated the influence of motor expertise on object-based versus egocentric transformations in a chronometric mental rotation task using images of either the own or another person's body as stimulus material. According to the embodied cognition viewpoint, we hypothesized motor-experts to outperform non-motor experts specifically in the egocentric condition because of higher kinesthetic representation and motor simulations compared to object-based transformations. In line with this, we expected that images of the own body are solved faster than another person's body stimuli.

View Article and Find Full Text PDF