Publications by authors named "Bernhard Reuter"

Immunization through repeated direct venous inoculation of Plasmodium falciparum (Pf) sporozoites (PfSPZ) under chloroquine chemoprophylaxis, using the PfSPZ Chemoprophylaxis Vaccine (PfSPZ-CVac), induces high-level protection against controlled human malaria infection (CHMI). Humoral and cellular immunity contribute to vaccine efficacy but only limited information about the implicated Pf-specific antigens is available. Here, we examined Pf-specific antibody profiles, measured by protein arrays representing the full Pf proteome, of 40 placebo- and PfSPZ-immunized malaria-naïve volunteers from an earlier published PfSPZ-CVac dose-escalation trial.

View Article and Find Full Text PDF

Artificial neural networks show promising performance in detecting correlations within data that are associated with specific outcomes. However, the black-box nature of such models can hinder the knowledge advancement in research fields by obscuring the decision process and preventing scientist to fully conceptualize predicted outcomes. Furthermore, domain experts like healthcare providers need explainable predictions to assess whether a predicted outcome can be trusted in high stakes scenarios and to help them integrating a model into their own routine.

View Article and Find Full Text PDF

Motivation: The size of available omics datasets is steadily increasing with technological advancement in recent years. While this increase in sample size can be used to improve the performance of relevant prediction tasks in healthcare, models that are optimized for large datasets usually operate as black boxes. In high-stakes scenarios, like healthcare, using a black-box model poses safety and security issues.

View Article and Find Full Text PDF

Motivation: Machine learning methods can be used to support scientific discovery in healthcare-related research fields. However, these methods can only be reliably used if they can be trained on high-quality and curated datasets. Currently, no such dataset for the exploration of Plasmodium falciparum protein antigen candidates exists.

View Article and Find Full Text PDF

Computational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank ( https://cellrank.

View Article and Find Full Text PDF

Markov state models are to date the gold standard for modeling molecular kinetics since they enable the identification and analysis of metastable states and related kinetics in a very instructive manner. The state-of-the-art Markov state modeling methods and tools are very well developed for the modeling of reversible processes in closed equilibrium systems. On the contrary, they are largely not well suited to deal with nonreversible or even nonautonomous processes of nonequilibrium systems.

View Article and Find Full Text PDF

Markov state models (MSMs) have received an unabated increase in popularity in recent years, as they are very well suited for the identification and analysis of metastable states and related kinetics. However, the state-of-the-art Markov state modeling methods and tools enforce the fulfillment of a detailed balance condition, restricting their applicability to equilibrium MSMs. To date, they are unsuitable to deal with general dominant data structures including cyclic processes, which are essentially associated with nonequilibrium systems.

View Article and Find Full Text PDF