Publications by authors named "Bernhard Norrlinger"

Purpose: Seasonal trends in linear accelerator output have been reported by at least one institution and data have suggested that they may be present at our center as well. The purpose of this work was to characterize these trends and determine whether local environmental conditions within the treatment rooms may be impacting the linear accelerators and/or the quality control (QC) dosimeter.

Methods: Runtime plots of daily output data, acquired using an in-house ion chamber-based device, over 3 yr and for 15 linear accelerators of different makes and models were reviewed and evaluated.

View Article and Find Full Text PDF

Purpose: The delivery accuracy of highly conformal dose distributions generated using intensity modulation and collimator, gantry, and couch degrees of freedom is directly affected by the quality of the alignment between the radiation beam and the mechanical axes of a linear accelerator. For this purpose, quality control (QC) guidelines recommend a tolerance of ±1 mm for the coincidence of the radiation and mechanical isocenters. Traditional QC methods for assessment of radiation and mechanical axes alignment (based on pointer alignment) are time consuming and complex tasks that provide limited accuracy.

View Article and Find Full Text PDF

Purpose: High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models.

View Article and Find Full Text PDF

Purpose: Clinical implementation of online adaptive radiotherapy requires generation of modified fields and a method of dosimetric verification in a short time. We present a method of treatment field modification to account for patient setup error, and an online method of verification using an independent monitoring system.

Methods: The fields are modified by translating each multileaf collimator (MLC) defined aperture in the direction of the patient setup error, and magnifying to account for distance variation to the marked isocentre.

View Article and Find Full Text PDF

Purpose: To develop an independent and on-line beam monitoring system, which can validate the accuracy of segment-by-segment energy fluence delivery for each treatment field. The system is also intended to be utilized for pretreatment dosimetric quality assurance of intensity modulated radiation therapy (IMRT), on-line image-guided adaptive radiation therapy, and volumetric modulated arc therapy.

Methods: The system, referred to as the integral quality monitor (IQM), utilizes an area integrating energy fluence monitoring sensor (AIMS) positioned between the final beam shaping device [i.

View Article and Find Full Text PDF

The aim of this study is to evaluate the impact of the patient dose due to the kilovoltage cone beam computed tomography (kV-CBCT) in a prostate intensity-modulated radiation therapy (IMRT). The dose distributions for the five prostate IMRTs were calculated using the Pinnacle treatment planning system. To calculate the patient dose from CBCT, phase-space beams of a CBCT head based on the ELEKTA x-ray volume imaging system were generated using the Monte Carlo BEAMnr code for 100, 120, 130, and 140 kVp energies.

View Article and Find Full Text PDF

Kilovoltage cone-beam computerized tomography (kV-CBCT) systems integrated into the gantry of linear accelerators can be used to acquire high-resolution volumetric images of the patient in the treatment position. Using on-line software and hardware, patient position can be determined accurately with a high degree of precision and, subsequently, set-up parameters can be adjusted to deliver the intended treatment. While the patient dose due to a single volumetric imaging acquisition is small compared to the therapy dose, repeated and daily image guidance procedures can lead to substantial dose to normal tissue.

View Article and Find Full Text PDF