Publications by authors named "Bernhard Hofinger"

Physical mutagens are a powerful tool used for genetic research and breeding for over eight decades. Yet, when compared to chemical mutagens, data sets on the effect of different mutagens and dosages on the spectrum and density of induced mutations remain lacking. To address this, we investigated the landscape of mutations induced by gamma and X-ray radiation in the most widely cultivated crop species: rice.

View Article and Find Full Text PDF

Cross-kingdom small RNA (sRNA) silencing has recently emerged as a mechanism facilitating fungal colonization and disease development. Here we characterized RNAi pathways in , a major fungal pathogen of wheat, and assessed their contribution to pathogenesis. Computational analysis of fungal sRNA and host mRNA sequencing datasets was used to define the global sRNA populations in and predict their mRNA targets in wheat.

View Article and Find Full Text PDF

Improvements to massively parallel sequencing have allowed the routine recovery of natural and induced sequence variants. A broad range of biological disciplines have benefited from this, ranging from plant breeding to cancer research. The need for high sequence coverage to accurately recover single nucleotide variants and small insertions and deletions limits the applicability of whole genome approaches.

View Article and Find Full Text PDF

Cassava is one of the most important food security crops in tropical countries, and a competitive resource for the starch, food, feed and ethanol industries. However, genomics research in this crop is much less developed compared to other economically important crops such as rice or maize. The International Center for Tropical Agriculture (CIAT) maintains the largest cassava germplasm collection in the world.

View Article and Find Full Text PDF

Two distinct patterns of sequence diversity for the recessive alleles of two host factors HvPDIL5 - 1 and HvEIF4E indicated the adaptive selection for bymovirus resistance in cultivated barley from East Asia. Plant pathogens are constantly challenging plant fitness and driving resistance gene evolution in host species. Little is known about the evolution of sequence diversity in host recessive resistance genes that interact with plant viruses.

View Article and Find Full Text PDF

Background: Doubled haploidy is a fundamental tool in plant breeding as it provides the fastest way to generate populations of meiotic recombinants in a genetically fixed state. A wide range of methods has been developed to produce doubled haploid (DH) plants and recent advances promise efficient DH production in otherwise recalcitrant species. Since the cellular origin of the plants produced is not always certain, rapid screening techniques are needed to validate that the produced individuals are indeed homozygous and genetically distinct from each other.

View Article and Find Full Text PDF

In barley, the eukaryotic translation initiation factor 4E (eIF4E) gene situated on chromosome 3H is recognized as an important source of resistance to the bymoviruses Barley yellow mosaic virus and Barley mild mosaic virus. In modern barley cultivars, two recessive eIF4E alleles, rym4 and rym5, confer different isolate-specific resistances. In this study, the sequence of eIF4E was analysed in 1090 barley landraces and noncurrent cultivars originating from 84 countries.

View Article and Find Full Text PDF

An original method has been established for the identification of novel alleles of eukaryotic translation initiation factor 4E (eIF4E) gene, which is required for resistance to agronomically important bymoviruses, in barley germplasm. This method involves scanning for sequence variations in cDNA-derived PCR amplicons using High-resolution melting (HRM) followed by direct Sanger sequencing of only those amplicons which were predicted to carry nucleotide changes. HRM is a simple, cost-effective, rapid and high-throughput assay, which so far has only been widely used in clinical pathology for molecular diagnostic of diseases and patient genotyping.

View Article and Find Full Text PDF