Perfluorooctanesulfonic acid (PFOS) is a widely recognized environment pollutant known for its high bioaccumulation potential and a long elimination half-life. Several studies have shown that PFOS can alter multiple biological pathways and negatively affect human health. Considering the direct exposure to the gastrointestinal (GI) tract to environmental pollutants, PFOS can potentially disrupt intestinal homeostasis.
View Article and Find Full Text PDFBackground: Gut microbiome metabolites are important modulators of host health and disease. However, the overall metabolic potential of the gut microbiome and interactions with the host organs have been underexplored.
Results: Using stable isotope resolved metabolomics (SIRM) in mice orally gavaged with C-inulin (a tracer), we first observed dynamic enrichment of C-metabolites in cecum contents in the amino acids and short-chain fatty acid metabolism pathways.
The development and outcome of inflammatory diseases are associated with genetic and lifestyle factors, which include chemical and nonchemical stressors. Persistent organic pollutants (POPs) are major groups of chemical stressors. For example, dioxin-like polychlorinated biphenyls (PCBs), per- and polyfluoroalkyl substances (PFASs), and polybrominated diphenyl ethers (PBDEs) are closely associated with the incidence of inflammatory diseases.
View Article and Find Full Text PDFPFAS (per- and polyfluoroalkyl substances) are organofluorine substances that are used commercially in products like non-stick cookware, food packaging, personal care products, fire-fighting foam, etc. These chemicals have several different subtypes made of varying numbers of carbon and fluorine atoms. PFAS substances that have longer carbon chains, such as PFOS (perfluorooctane sulfonic acid), can potentially pose a significant public health risk due to their ability to bioaccumulate and persist for long periods of time in the body and the environment.
View Article and Find Full Text PDFBackground: Perfluorooctane sulfonate (PFOS) is a persistent environmental pollutant that has become a significant concern around the world. Exposure to PFOS may alter gut microbiota and liver metabolic homeostasis in mammals, thereby increasing the risk of cardiometabolic diseases. Diets high in soluble fibers can ameliorate metabolic disease risks.
View Article and Find Full Text PDFThe gut microbiome generates numerous metabolites that exert local effects and enter the circulation to affect the functions of many organs. Despite extensive sequencing-based characterization of the gut microbiome, there remains a lack of understanding of microbial metabolism. Here, we developed an untargeted stable isotope-resolved metabolomics (SIRM) approach for the holistic study of gut microbial metabolites.
View Article and Find Full Text PDFPolychlorinated biphenyl (PCB)126 and perfluorooctane sulfonic acid (PFOS) are halogenated organic pollutants of high concern. Exposure to these chemicals is ubiquitous, and can lead to potential synergistic adverse effects in individuals exposed to both classes of chemicals. The present study was designed to identify interactions between PCB126 and PFOS that might promote acute changes in inflammatory pathways associated with cardiovascular disease and liver injury.
View Article and Find Full Text PDFExposure to some environmental pollutants increases the risk of developing inflammatory disorders such as steatosis and cardiometabolic diseases. Diets high in fermentable fibers such as inulin can modulate the gut microbiota and lessen the severity of pro-inflammatory diseases, especially in individuals with elevated circulating cholesterol. Thus, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with 8% inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
View Article and Find Full Text PDFElevated circulating levels of ceramides (Cers) are associated with increased risk of cardiometabolic diseases, and Cers may play a causative role in metabolic dysfunction that precedes cardiac events, such as mortality as a result of coronary artery disease. Although the mechanisms involved are likely complex, these associations suggest that lowering circulating Cer levels could be protective against cardiovascular diseases. Conversely, dietary fibers, such as inulin, have been reported to promote cardiovascular and metabolic health.
View Article and Find Full Text PDFRev Environ Health
September 2019
The increased incidence of non-communicable human diseases may be attributed, at least partially, to exposures to toxic chemicals such as persistent organic pollutants (POPs), air pollutants and heavy metals. Given the high mortality and morbidity of pollutant exposure associated diseases, a better understanding of the related mechanisms of toxicity and impacts on the endogenous host metabolism are needed. The metabolome represents the collection of the intermediates and end products of cellular processes, and is the most proximal reporter of the body's response to environmental exposures and pathological processes.
View Article and Find Full Text PDFEnvironmental pollution contributes to fatty liver disease pathogenesis. Polychlorinated biphenyl (PCB) exposures have been associated with liver enzyme elevation and suspected steatohepatitis in cohort studies. Male mice treated with the commercial PCB mixture, Aroclor 1260 (20 mg/kg), and fed high fat diet (HFD) for 12 weeks developed steatohepatitis.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are persistent organic pollutants that contribute to inflammatory diseases such as atherosclerosis, and macrophages play a key role in the overall inflammatory response. Depending on specific environmental stimuli, macrophages can be polarized either to pro-inflammatory (e.g.
View Article and Find Full Text PDFExposure to environmental pollutants is associated with a greater risk for metabolic diseases including cardiovascular disease. Pollutant exposure can also alter gut microbial populations that may contribute to metabolic effects and progression of inflammatory diseases. Short-chain fatty acids (SCFAs), produced from gut fermentation of dietary carbohydrates, such as inulin, exert numerous effects on host energy metabolism and are linked to a reduced risk of diseases.
View Article and Find Full Text PDFThe deleterious effects of PCB 126 are complex, and the role of the liver in modifying toxic insult is not well understood. We utilized metabolomics approaches to compare liver metabolites significantly affected by PCB 126 in control mice and a diet induced liver injury mouse model. In this 14-week study, mice were fed either an amino acid supplemented control diet (CD) or a methionine-choline deficient diet (MCD) which promoted nonalcoholic steatohepatitis (NASH) and were subsequently exposed to PCB 126.
View Article and Find Full Text PDFThe gut microbiome is sensitive to diet and environmental exposures and is involved in the regulation of host metabolism. Additionally, gut inflammation is an independent risk factor for the development of metabolic diseases, specifically atherosclerosis and diabetes. Exposures to dioxin-like pollutants occur primarily via ingestion of contaminated foods and are linked to increased risk of developing cardiometabolic diseases.
View Article and Find Full Text PDFHuman exposure to environmental contaminants such as persistent chlorinated organics, heavy metals, pesticides, phthalates, flame retardants, electronic waste and airborne pollutants around the world, and especially in Southeast Asian regions, are significant and require urgent attention. Given this widespread contamination and abundance of such toxins as persistent organic pollutants (POPs) in the ecosystem, it is unlikely that remediation alone will be sufficient to address the health impacts associated with this exposure. Furthermore, we must assume that the impact on health of some of these contaminants results in populations with extraordinary vulnerabilities to disease risks.
View Article and Find Full Text PDFTrimethylamine N-oxide (TMAO) is a diet and gut microbiota-derived metabolite that has been linked to cardiovascular disease risk in human studies and animal models. TMAO levels show wide inter and intra individual variability in humans that can likely be accounted for by multiple factors including diet, the gut microbiota, levels of the TMAO generating liver enzyme Flavin-containing monooxygenase 3 (FMO3) and kidney function. We recently found that dioxin-like (DL) environmental pollutants increased FMO3 expression to elevate circulating diet-derived TMAO in mice, suggesting that exposure to this class of pollutants might also contribute to inter-individual variability in circulating TMAO levels in humans.
View Article and Find Full Text PDFExposure to dioxins and related persistent organic pollutants likely contributes to cardiovascular disease (CVD) risk through multiple mechanisms including the induction of chronic inflammation. Epidemiological studies have shown that leaner individuals may be more susceptible to the detrimental effects of lipophilic toxicants because they lack large adipose tissue depots that can accumulate and sequester these pollutants. This phenomenon complicates efforts to study mechanisms of pollutant-accelerated atherosclerosis in experimental animal models where high-fat feeding and adipose expansion limit the bioavailability of lipophilic pollutants.
View Article and Find Full Text PDFDespite production having stopped in the 1970s, polychlorinated biphenyls (PCBs) represent persistent organic pollutants that continue to pose a serious human health risk. Exposure to PCBs has been linked to chronic inflammatory diseases, such as cardiovascular disease, type 2 diabetes, obesity, as well as hepatic disorders, endocrine dysfunction, neurological deficits, and many others. This is further complicated by the PCB's strong hydrophobicity, resulting in their ability to accumulate up the food chain and to be stored in fat deposits.
View Article and Find Full Text PDFThe liver is vital for xenobiotic and endobiotic metabolism. Previously, we demonstrated that a compromised liver worsened toxicity associated with exposure to polychlorinated biphenyls (PCBs), through disruption of energy homeostasis. However, the role of a compromised liver in defining dioxin-like PCB126 toxicity on the peripheral vasculature and associated inflammatory diseases is yet to be studied.
View Article and Find Full Text PDFHuman exposures to environmental contaminants around the world contribute to the global burden of disease and thus require urgent attention. Exploring preventive measures against environmental exposure and disease risk is essential. While a sedentary lifestyle and/or poor dietary habits can exacerbate the deleterious effects resulting from exposure to toxic chemicals, much emerging evidence suggests that positive lifestyle changes (e.
View Article and Find Full Text PDF