Annu Int Conf IEEE Eng Med Biol Soc
July 2013
Brain-computer interface (BCI) systems translate brain activity into messages or commands. BCI studies that record from a dozen or more subjects typically report substantial variations in performance, as measured by accuracy. Usually, some subjects attain excellent (even perfect) accuracy, while at least one subject performs so poorly that effective communication would not be possible with that BCI.
View Article and Find Full Text PDFBrain-computer interfaces (BCI) are communication systems that allow people to send messages or commands without movement. BCIs rely on different types of signals in the electroencephalogram (EEG), typically P300s, steady-state visually evoked potentials (SSVEP), or event-related desynchronization. Early BCI systems were often evaluated with a selected group of subjects.
View Article and Find Full Text PDFImmersive virtual reality (IVR) typically generates the illusion in participants that they are in the displayed virtual scene where they can experience and interact in events as if they were really happening. Teleoperator (TO) systems place people at a remote physical destination embodied as a robotic device, and where typically participants have the sensation of being at the destination, with the ability to interact with entities there. In this paper, we show how to combine IVR and TO to allow a new class of application.
View Article and Find Full Text PDF