The proteome of the cell is at the frontier of being too complex for proteomic analysis. Organelles provide a step up. Organelles compartmentalize the cell enabling a proteome, physiology and metabolism analysis in time and in space.
View Article and Find Full Text PDFThe N-termini of the NADPH : protochlorophyllide oxidoreductase (POR) proteins A and B from barley and POR from pea were determined by acetylation of the proteins and selective isolation of the N-terminal peptides for mass spectrometry de novo sequence analysis. We show that the cleavage sites between the transit peptides and the three mature POR proteins are homologous. The N-terminus in PORA is V48, that in PORB is A61, and that in POR from pea is E64.
View Article and Find Full Text PDFIn Photosystem II (PSII), a high number of plastid encoded and membrane integral low molecular weight proteins smaller than 10 kDa, the proteins PsbE, F, H, I, J, K, L, M, N, Tc, Z and the nuclear encoded PsbW, X, Y1, Y2 proteins have been described. Here we show that all low molecular weight proteins of PSII already accumulate in the etioplast membrane fraction in darkness, whereas PsaI and PsaJ of photosystem I (PSI) represent the only low molecular weight proteins that do not accumulate in darkness. We found by BN-PAGE separation of membrane protein complexes and selective MS that the accumulation of one-helix proteins from PSII is light independent and occurs in etioplasts.
View Article and Find Full Text PDFPhotosystem II is a multimeric protein complex of the thylakoid membrane in chloroplasts. Approximately half of the at least 26 different integral membrane protein subunits have molecular masses lower than 10 kDa. After one-dimensional (1D) or two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) separation, followed by enzymatic digestion of detected proteins, hardly any of these low-molecular-weight (LMW) subunits are detectable.
View Article and Find Full Text PDFThe proteomic characterization of proteins and protein complexes from cells and cell organelles is the next challenge for investigation of the cell. After isolation of the cell compartment, three steps have to be performed in the laboratory to yield information about the proteins present. The protein mixtures must be separated into single species, broken down into peptides, and, finally, identified by mass spectrometry.
View Article and Find Full Text PDFIn-gel digestion has been standardised using a poly(propylene) disposable. We designed a four-step rapid and simple in-gel digestion protocol which is carried out in one self-contained reaction tube avoiding keratin contamination. In order to quantify the efficiency of in-gel digestion, we developed a rapid on-column peptide acetylation protocol.
View Article and Find Full Text PDFWe have investigated the pathway by which the 16 amino-acid C-terminal extension of the D1 subunit of photosystem two is removed in the cyanobacterium Synechocystis sp. PCC 6803 to leave Ala344 as the C-terminal residue. Previous work has suggested a two-step process involving formation of a processing intermediate of D1, termed iD1, of uncertain origin.
View Article and Find Full Text PDFThe proteome of a membrane compartment has been investigated by de novo sequence analysis after tryptic in gel digestion. Protein complexes and corresponding protein subunits were separated by a 2-D Blue Native (BN)/SDS-PAGE system. The transmembrane proteins of thylakoid membranes from a higher plant (Hordeum vulgare L.
View Article and Find Full Text PDFAnabaena is a model to analyze the evolutionary development of plastids, cell differentiation, and the regulation of nitrogen fixation. Thereby, the outer membrane proteome is the place of sensing environmental differences and during plastid development, systems for intracellular communication had to be added to the proteome of this membrane. We present a protocol for the isolation of the outer membrane from Anabaena and the analysis of the proteome using different tools.
View Article and Find Full Text PDFTransport of nuclear encoded proteins into mitochondria is mediated by multisubunit translocation machineries in the outer and inner membranes of mitochondria. The TOM complex contains receptor and pore components that facilitate the recognition of preproteins and their transfer through the outer membrane. In addition, the complex contains a set of small proteins.
View Article and Find Full Text PDFProteomics of membrane proteins is essential for the understanding of cellular function. However, mass spectrometric analysis of membrane proteomes has been less successful than the proteomic determination of soluble proteins. To elucidate the mystery of transmembrane proteins in mass spectrometry, we present a detailed statistical analysis of experimental data derived from chloroplast membranes.
View Article and Find Full Text PDFAccumulation of monomer and dimer photosystem (PS) II reaction center core complexes has been analyzed by two-dimensional Blue-native/SDS-PAGE in Synechocystis PCC 6803 wild type and in mutant strains lacking genes psbA, psbB, psbC, psbDIC/DII, or the psbEFLJ operon. In vivo pulse-chase radiolabeling experiments revealed that mutant cells assembled PSII precomplexes only. In DeltapsbC and DeltapsbB, assembly of reaction center cores lacking CP43 and reaction center complexes was detected, respectively.
View Article and Find Full Text PDF