Despite a distinct developmental origin, extraembryonic cells in mice contribute to gut endoderm and converge to transcriptionally resemble their embryonic counterparts. Notably, all extraembryonic progenitors share a non-canonical epigenome, raising several pertinent questions, including whether this landscape is reset to match the embryonic regulation and if extraembryonic cells persist into later development. Here we developed a two-colour lineage-tracing strategy to track and isolate extraembryonic cells over time.
View Article and Find Full Text PDFSOX2 is a transcription factor involved in the regulatory network maintaining the pluripotency of embryonic stem cells in culture as well as in early embryos. In addition, SOX2 plays a pivotal role in neural stem cell formation and neurogenesis. How SOX2 can serve both processes has remained elusive.
View Article and Find Full Text PDFAfter myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are taking part in fine-tuning such gene programs.
View Article and Find Full Text PDFThe node and notochord are important signaling centers organizing the dorso-ventral patterning of cells arising from neuro-mesodermal progenitors forming the embryonic body anlage. Owing to the scarcity of notochord progenitors and notochord cells, a comprehensive identification of regulatory elements driving notochord-specific gene expression has been lacking. Here, we have used ATAC-seq analysis of FACS-purified notochord cells from Theiler stage 12-13 mouse embryos to identify 8921 putative notochord enhancers.
View Article and Find Full Text PDFLong non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via an RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and found that this FendrrBox is partially required for Fendrr function in vivo.
View Article and Find Full Text PDFEsophageal atresia with or without tracheoesophageal fistula (EA/TEF) is the most common congenital malformation of the upper digestive tract. This study represents the first genome-wide association study (GWAS) to identify risk loci for EA/TEF. We used a European case-control sample comprising 764 EA/TEF patients and 5,778 controls and observed genome-wide significant associations at three loci.
View Article and Find Full Text PDFThe node-streak border region comprising notochord progenitor cells (NPCs) at the posterior node and neuro-mesodermal progenitor cells (NMPs) in the adjacent epiblast is the prime organizing center for axial elongation in mouse embryos. The T-box transcription factor brachyury (T) is essential for both formation of the notochord and maintenance of NMPs, and thus is a key regulator of trunk and tail development. The T promoter controlling T expression in NMPs and nascent mesoderm has been characterized in detail; however, control elements for T expression in the notochord have not been identified yet.
View Article and Find Full Text PDFPost-implantation mammalian embryogenesis involves profound molecular, cellular, and morphogenetic changes. The study of these highly dynamic processes is complicated by the limited accessibility of development. In recent years, several complementary systems comprising self-organized assemblies of mouse embryonic stem cells, such as gastruloids, have been reported.
View Article and Find Full Text PDFMammalian spermatozoa employ calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) signaling in generating flagellar beat. However, how sperm direct their movement towards the egg cells has remained elusive. Here we show that the Rho small G protein RAC1 plays an important role in controlling progressive motility, in particular average path velocity and linearity.
View Article and Find Full Text PDFMammalian post-implantation development comprises the coordination of complex lineage decisions and morphogenetic processes shaping the embryo. Despite technological advances, a comprehensive understanding of the dynamics of these processes and of the self-organization capabilities of stem cells and their descendants remains elusive. Building synthetic embryo-like structures from pluripotent embryonic stem cells in vitro promises to fill these knowledge gaps and thereby may prove transformative for developmental biology.
View Article and Find Full Text PDFGenetic predisposition affects the penetrance of tumor-initiating mutations, such as APC mutations that stabilize β-catenin and cause intestinal tumors in mice and humans. However, the mechanisms involved in genetically predisposed penetrance are not well understood. Here, we analyzed tumor multiplicity and gene expression in tumor-prone mice on highly variant C57BL/6J (B6) and PWD/Ph (PWD) genetic backgrounds.
View Article and Find Full Text PDFOncogenic mutations in KRAS or BRAF are frequent in colorectal cancer and activate the ERK kinase. Here, we find graded ERK phosphorylation correlating with cell differentiation in patient-derived colorectal cancer organoids with and without KRAS mutations. Using reporters, single cell transcriptomics and mass cytometry, we observe cell type-specific phosphorylation of ERK in response to transgenic KRAS in mouse intestinal organoids, while transgenic BRAF activates ERK in all cells.
View Article and Find Full Text PDFTransmission ratio distortion (TRD) by the mouse t-haplotype, a variant region on chromosome 17, is a well-studied model of non-Mendelian inheritance. It is characterized by the high transmission ratio (up to 99%) of the t-haplotype from t/+ males to their offspring. TRD is achieved by the exquisite ability of the responder (Tcr) to trigger non-Mendelian inheritance of homologous chromosomes.
View Article and Find Full Text PDFBackground: Syndromic brain malformations comprise a large group of anomalies with a birth prevalence of about 1 in 1,000 live births. Their etiological factors remain largely unknown. To identify causative mutations, we used whole-exome sequencing (WES) in aborted fetuses and children with syndromic brain malformations in which chromosomal microarray analysis was previously unremarkable.
View Article and Find Full Text PDFT-box transcription factors play essential roles in multiple aspects of vertebrate development. Here, we show that cooperative function of BRACHYURY (T) with histone-modifying enzymes is essential for mouse embryogenesis. A single point mutation (T) results in decreased histone 3 lysine 27 acetylation (H3K27ac) at T target sites, including the locus, suggesting that T autoregulates the maintenance of its expression and functions by recruiting permissive chromatin modifications to putative enhancers during mesoderm specification.
View Article and Find Full Text PDFThe spinal cord and mesodermal tissues of the trunk such as the vertebral column and skeletal musculature derive from neuro-mesodermal progenitors (NMPs). Sox2, Brachyury (T), and Tbx6 have been correlated with NMP potency and lineage choice; however, their exact role and interaction in these processes have not yet been revealed. Here we present a global analysis of NMPs and their descending lineages performed on purified cells from embryonic day 8.
View Article and Find Full Text PDFThe mouse haplotype, a variant 20 cM genomic region on Chromosome 17, harbors 16 embryonic control genes identified by recessive lethal mutations isolated from wild mouse populations. Due to technical constraints so far only one of these, the lethal, has been cloned and molecularly characterized. Here we report the molecular isolation of the lethal.
View Article and Find Full Text PDFColorectal cancer is driven by cooperating oncogenic mutations. In this study, we use organotypic cultures derived from transgenic mice inducibly expressing oncogenic β-catenin and/or PIK3CA to follow sequential changes in cancer-related signaling networks, intestinal cell metabolism, and physiology in a three-dimensional environment mimicking tissue architecture. Activation of β-catenin alone results in the formation of highly clonogenic cells that are nonmotile and prone to undergo apoptosis.
View Article and Find Full Text PDFPresomitic mesoderm (PSM) cells are the precursors of the somites, which flank both sides of the neural tube and give rise to the musculo-skeletal system shaping the vertebrate body. WNT and FGF signaling control the formation of both the PSM and the somites and show a graded distribution with highest levels in the posterior PSM. We have used reporters for the mesoderm/PSM control genes T, Tbx6, and Msgn1 to investigate the differentiation of mouse ESCs from the naïve state via EpiSCs to PSM cells.
View Article and Find Full Text PDFSince decades it has been known that non-protein-coding RNAs have important cellular functions. Deep sequencing recently facilitated the discovery of thousands of novel transcripts, now classified as long noncoding RNAs (lncRNAs), in many vertebrate and invertebrate species. LncRNAs are involved in a wide range of cellular mechanisms, from almost all aspects of gene expression to protein translation and stability.
View Article and Find Full Text PDFDuring somitogenesis differential gene expression can be observed for so-called cyclic genes, which display expression changes with a periodicity of 120min in the mouse. In screens to identify novel cyclic genes in murine embryos, Fam181b was predicted to be an oscillating gene in the presomitic mesoderm (psm). This gene, and its closely related paralog Fam181a, belong to the thus far uncharacterized Fam181 gene family.
View Article and Find Full Text PDFCongenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT.
View Article and Find Full Text PDF