Purpose: Generalized arterial calcification of infancy, pseudoxanthoma elasticum, autosomal recessive hypophosphatemic rickets type 2, and hypophosphatasia are rare inherited disorders associated with altered plasma levels of inorganic pyrophosphate (PPi). In this study, we aimed to establish a reference range for plasma PPi in the pediatric population, which would be essential to support its use as a biomarker in children with mineralization disorders.
Methods: Plasma samples were collected from 200 children aged 1 day to 18 years who underwent blood testing for medical conditions not affecting plasma PPi levels.
Int J Radiat Oncol Biol Phys
December 2021
Purpose: In the current molecular-targeted cancer treatment era, many new agents are being developed so that optimizing therapy with a combination of radiation and drugs is complex. The use of emerging laboratory technologies to further biological understanding of drug-radiation mechanisms of action will enhance the efficiency of the progression from preclinical studies to clinical trials. In 2017, the National Cancer Institute (NCI) solicited proposals through PAR 16-111 to conduct preclinical research combining targeted anticancer agents in the Cancer Therapy Evaluation Program's portfolio with chemoradiation.
View Article and Find Full Text PDFBirinapant is a novel SMAC peptidomimetic molecule in clinical development. It suppresses the inhibitor of apoptosis proteins (IAPs) and promotes cytochrome-C/Apaf-1/caspase-9 activation to induce effective apoptosis. Because IAP inhibition has been shown to enhance the sensitivity of cancer cells to radiation, we investigated the role of birinapant in radiosensitization of glioblastoma cells in vitro and in vivo.
View Article and Find Full Text PDFHepatocytes are parenchymal cells of the liver and engage multiple metabolic functions, including synthesis and secretion of proteins essential for systemic energy homeostasis. Primary hepatocytes isolated from the murine liver constitute a valuable biological tool to understand the functional properties or alterations occurring in the liver. Herein we describe a method for the isolation and culture of primary mouse hepatocytes by performing a two-step collagenase perfusion technique and discuss their utilization for investigating protein metabolism.
View Article and Find Full Text PDFRNA silencing inhibits mRNA translation. While mRNA translation accounts for the majority of cellular energy expenditure, it is unclear if RNA silencing regulates energy homeostasis. Here, we report that hepatic Argonaute 2 (Ago2)-mediated RNA silencing regulates both intrinsic energy production and consumption and disturbs energy metabolism in the pathogenesis of obesity.
View Article and Find Full Text PDFThe importance of circulating free DNA (cfDNA) in cancer clinical research was recognized in 1994 when a mutated RAS gene fragment was detected in a patient's blood sample. Up to 1% of the total circulating DNA in patients with cancer is circulating tumor DNA (ctDNA) that originates from tumor cells. As ctDNA is rapidly cleared from the blood stream and can be obtained by minimally invasive methods, it can be used as a dynamic cancer biomarker for cancer early detection, diagnosis, and treatment monitoring.
View Article and Find Full Text PDFObesity and type 2 diabetes are frequently associated with peripheral neuropathy. Though there are multiple methods for diagnosis and analysis of morphological changes of peripheral nerves and blood vessels, three-dimensional high-resolution imaging is necessary to appreciate the pathogenesis with an anatomically recognizable branching morphogenesis and patterning. Here we established a novel technique for whole-mount imaging of adult mouse ear skin to visualize branching morphogenesis and patterning of peripheral nerves and blood vessels.
View Article and Find Full Text PDFInnovation and progress in radiation oncology depend on discovery and insights realized through research in radiation biology. Radiobiology research has led to fundamental scientific insights, from the discovery of stem/progenitor cells to the definition of signal transduction pathways activated by ionizing radiation that are now recognized as integral to the DNA damage response (DDR). Radiobiological discoveries are guiding clinical trials that test radiation therapy combined with inhibitors of the DDR kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM), ataxia telangiectasia related (ATR), and immune or cell cycle checkpoint inhibitors.
View Article and Find Full Text PDFA number of oncology phase II radiochemotherapy trials with promising results have been conducted late in the overall experimental therapeutic agent development process. Accelerated development and approval of experimental therapeutic agents have stimulated further interest in much earlier radiation-agent studies to increase the likelihood of success in phase III trials. To sustain this interest, more forward-thinking preclinical radiobiology experimental designs are needed to improve discovery of promising radiochemotherapy plus agent combinations for clinical trial testing.
View Article and Find Full Text PDFThere is an urgent need to improve reproducibility and translatability of preclinical data to fully exploit opportunities for molecular therapeutics involving radiation and radiochemotherapy. For in vitro research, the clonogenic assay remains the current state-of-the-art of preclinical assays, whereas newer moderate and high-throughput assays offer the potential for rapid initial screening. Studies of radiation response modification by molecularly targeted agents can be improved using more physiologic 3D culture models.
View Article and Find Full Text PDFBackground: Clinical testing of new therapeutic interventions requires comprehensive, high-quality preclinical data. Concerns regarding quality of preclinical data have been raised in recent reports. This report examines the data on the interaction of 10 drugs with radiation and provides recommendations for improving the quality, reproducibility, and utility of future studies.
View Article and Find Full Text PDFAlthough radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures.
View Article and Find Full Text PDFDNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast.
View Article and Find Full Text PDFThe conventional use of radiotherapy is for local tumor control. Radiotherapy of the primary tumor can prevent the development of distant metastases, but this modality is generally not effective for treating preexisting systemic disease. However, radiation-induced tumor destruction may be considered a novel strategy for in situ cancer vaccination, in which tumor antigens released from dying tumor cells may be presented in an immunostimulatory context.
View Article and Find Full Text PDFA workshop entitled "Lessons Learned from Radiation Oncology Trials" was held on December 7-8, 2011, in Bethesda, MD, to present and discuss some of the recently conducted radiation oncology clinical trials with a focus on those that failed to refute the null hypothesis. The objectives of this workshop were to summarize and examine the questions that these trials provoked, to assess the quality and limitations of the preclinical data that supported the hypotheses underlying these trials, and to consider possible solutions to these challenges for the design of future clinical trials. Several themes emerged from the discussions: (i) opportunities to learn from null-hypothesis trials through tissue and imaging studies; (ii) value of preclinical data supporting the design of combinatorial therapies; (iii) significance of validated biomarkers; (iv) necessity of quality assurance in radiotherapy delivery; (v) conduct of sufficiently powered studies to address the central hypotheses; and (vi) importance of publishing results of the trials regardless of the outcome.
View Article and Find Full Text PDFSuppression of neo-angiogenesis is a clinically used anti-tumor strategy with new targets such as angiopoietin-2 (Ang2) being proposed. However, the functions of Ang2 in vascular remodeling, inflammation and tumor growth are not consistent. We examined effect of depletion of host Ang2 on liver colony formation using Ang2 deficient (Ang2(-/-)) mice.
View Article and Find Full Text PDFBackground: The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is activated in tumor cells and promotes tumor cell survival after radiation-induced DNA damage. Because the pathway may not be completely inhibited after blockade of PI3K itself, due to feedback through mammalian target of rapamycin (mTOR), more effective inhibition might be expected by targeting both PI3K and mTOR inhibition.
Materials And Methods: We investigated the effect of two dual PI3K/mTOR (both mTORC1 and mTORC2) inhibitors, NVP-BEZ235 and NVP-BGT226, on SQ20B laryngeal and FaDu hypopharyngeal cancer cells characterised by EGFR overexpression, on T24 bladder tumor cell lines with H-Ras mutation and on endothelial cells.
The aberrant vascular architecture of solid tumors results in hypoxia that limits the efficacy of radiotherapy. Vascular normalization using antiangiogenic agents has been proposed as a means to improve radiation therapy by enhancing tumor oxygenation, but only short-lived effects for this strategy have been reported so far. Here, we show that NVP-BEZ235, a dual inhibitor of phosphoinositide-3-kinase (PI3K) and mTOR, can improve tumor oxygenation and vascular structure over a prolonged period that achieves the aim of effective vascular normalization.
View Article and Find Full Text PDFPurpose: Because effective drug delivery is often limited by inadequate vasculature within the tumor, the ability to modulate the tumor microenvironment is one strategy that may achieve better drug distribution. We have previously shown that treatment of mice bearing tumors with phosphoinositide-3 kinase (PI3K) inhibitors alters vascular structure in a manner analogous to vascular normalization and results in increased perfusion of the tumor. On the basis of that result, we asked whether inhibition of PI3K would improve chemotherapy delivery.
View Article and Find Full Text PDF