Publications by authors named "Bernhard Dumoulin"

Fibrosis is a common manifestation of most progressive and degenerative diseases, with myofibroblast activation and matrix accumulation playing a key role. In this issue of the JCI, Hoeft et al. identify the important role of ADAMTS12 in fibroblast activation.

View Article and Find Full Text PDF

Progression of cystic kidney disease has been linked to activation of the mTORC1 signaling pathway. Yet the utility of mTORC1 inhibitors to treat patients with polycystic kidney disease remains controversial despite promising preclinical data. To define the cell intrinsic role of mTORC1 for cyst development, the mTORC1 subunit gene Raptor was selectively inactivated in kidney tubular cells lacking cilia due to simultaneous deletion of the kinesin family member gene Kif3A.

View Article and Find Full Text PDF

Kidneys are intricate three-dimensional structures in the body, yet the spatial and molecular principles of kidney health and disease remain inadequately understood. We generated high-quality datasets for 81 samples, including single-cell, single-nuclear, spot-level (Visium) and single-cell resolution (CosMx) spatial-RNA expression and single-nuclear open chromatin, capturing cells from healthy, diabetic and hypertensive diseased human kidneys. Combining these data, we identify cell types and map them to their locations within the tissue.

View Article and Find Full Text PDF

The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches.

View Article and Find Full Text PDF

Expansion microscopy physically enlarges biological specimens to achieve nanoscale resolution using diffraction-limited microscopy systems. However, optimal performance is usually reached using laser-based systems (for example, confocal microscopy), restricting its broad applicability in clinical pathology, as most centres have access only to light-emitting diode (LED)-based widefield systems. As a possible alternative, a computational method for image resolution enhancement, namely, super-resolution radial fluctuations (SRRF), has recently been developed.

View Article and Find Full Text PDF

Current therapies for Fabry disease are based on reversing intracellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosomal dysfunction. However, their effect in the reversal of end-organ damage, like kidney injury and chronic kidney disease, remains unclear. In this study, ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury.

View Article and Find Full Text PDF

The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the heterogenous nuclear ribonucleoprotein H/F (hnRNP H/F) family that binds to guanine-rich RNA sequences forming G-quadruplex structures. In mice and humans there are single copy GRSF1 genes, but multiple transcripts have been reported. GRSF1 has been implicated in a number of physiological processes (e.

View Article and Find Full Text PDF

The filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins.

View Article and Find Full Text PDF

Establishing a diagnosis in cases of fever of unknown origin (FUO) in immunocompromised patients can be difficult. In 25-35% infectious diseases are the underlying cause. This article reports the case of a 74-year-old woman with a 5-month history of fever.

View Article and Find Full Text PDF

In eukaryotic cells RNA-binding proteins have been implicated in virtually all post-transcriptional mechanisms of gene expression regulation. Based on the structural features of their RNA binding domains these proteins have been divided into several subfamilies. The presence of at least two RNA recognition motifs defines the group of heterogenous nuclear ribonucleoproteins H/F and one of its members is the guanine-rich sequence binding factor 1 (GRSF1).

View Article and Find Full Text PDF

Background: The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the hnRNP H/F family, which has been implicated in erythropoiesis, regulation of the redox homeostasis, embryonic brain development, mitochondrial function and cellular senescence. The molecular basis for GRSF1-RNA interaction has extensively been studied in the past but for the time being GRSF1 binding proteins have not been identified.

Methods: To search for GRSF1 binding proteins we first employed the yeast two-hybrid system and screened a cDNA library of human fetal brain for potential GRSF1 binding proteins.

View Article and Find Full Text PDF

The guanine-rich RNA sequence binding factor 1 (GRSF1) constitutes an ubiquitously occurring RNA-binding protein (RBP), which belongs to the family of heterogeneous nuclear ribonucleoprotein F/H (hnRNP F/H). It has been implicated in nuclear, cytosolic and mitochondrial RNA metabolism. Although the crystal structures of GRSF1 orthologs have not been solved, amino acid alignments with similar RNA-binding proteins suggested the existence of three RNA-binding domains designated quasi-RNA recognition motifs (qRRMs).

View Article and Find Full Text PDF