Publications by authors named "Bernd Werner"

Hot-melt extrusion (HME) is a widely used method for creating amorphous solid dispersions (ASDs) of poorly soluble drug substances, where the drug is molecularly dispersed in a solid polymer matrix. This study examines the impact of three different copovidone excipients, their reactive impurity levels, HME barrel temperature, and the distribution of colloidal silicon dioxide (SiO) on impurity levels, stability, and drug release of ASDs and their tablets. Initial peroxide levels were higher in Kollidon VA 64 (KVA64) and Plasdone S630 (PS630) compared to Plasdone S630 Ultra (PS630U), leading to greater oxidative degradation of the drug in fresh ASD tablets.

View Article and Find Full Text PDF

There is a growing focus on solid-state degradation, especially for its relevance in understanding interactions with excipients. Performing a solid-state degradation of Venetoclax (VEN), we delve into VEN's stability in different solid-state oxidative stress conditions, utilizing Peroxydone™ complex and urea peroxide (UHP). The investigation extends beyond traditional forced degradation scenarios, providing insights into VEN's behavior over 32 h, considering temperature and crystallinity conditions.

View Article and Find Full Text PDF

The present study deals with the development of dexamethasone (DM)-loaded implants using ester end-capped Resomer RG 502 poly(lactic acid-co-glycolic acid) (PLGA) (502), acid end-capped Resomer RG 502H PLGA (502H), and a 502H:502 mixture (3:1) via hot melt extrusion (HME). The prepared intravitreal implants (20 and 40% DM loaded in each PLGA) were thoroughly investigated to determine the effect of different end-capped PLGA and drug loading on the long-term release profile of DM. The implants were characterized for solid-state active pharmaceutical ingredient (APIs) using DSC and SWAXS, water uptake during stability study, the crystal size of API in the implant matrix using hot-stage polarized light microscopy, and in vitro release profile.

View Article and Find Full Text PDF

Cellulose acetate (CA) is the main component of controlled-release (CR) coating of formulations such as osmotic-controlled release oral delivery system (OROS) and CR microspheres. Despite multiple applications, there are limited or no reports dealing with the characterization and quantification of CA in the formulated systems. Thus, the present investigation deals with the development of the Quantitative Carbon-13 Nuclear Magnetic Resonance (qCNMR) spectroscopy method for the determination of CA amount in the CR microsphere formulations.

View Article and Find Full Text PDF

The present study systematically investigates the effect of annealing conditions and the Kolliphor P 407 content on the physicochemical and structural properties of Compritol (glyceryl behenate) and ternary systems prepared via melt cooling (Kolliphor P 407, Compritol, and a hydrophilic API) representing solid-lipid formulations. The physical properties of Compritol and the ternary systems with varying ratios of Compritol and Kolliphor P 407 were characterized using differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SWAXS) and infrared (IR) spectroscopy, and hot-stage microscopy (HSM), before and after annealing. The change in the chemical profiles of different Compritol components as a function of annealing was evaluated using H NMR spectroscopy.

View Article and Find Full Text PDF