We present a photoelectron imaging study of the small sodium cluster anions Na3(-), Na5(-), and Na7(-) at photon energies in the visible and near UV range (hv = 1.64-4.28 eV).
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2012
Photoelectron spectra of low temperature silicon doped gold cluster anions Au(n)Si(-) with n = 2-56 and silver cluster anions Ag(n)Si(-) with n = 5-82 have been measured. Comparing the spectra as well as the general size dependence of the electron detachment energies to the results on undoped clusters shows that the silicon atom changes the apparent free electron count in the clusters. In the case of larger gold clusters (with more than about 30 gold atoms) the silicon atom seems to consistently delocalize all of its four valence electrons, while in the case of the silver clusters a less uniform behavior is observed.
View Article and Find Full Text PDFPhotoelectron spectra of cold aluminum cluster anions Al(n)(-) have been measured in the size range n=13-75 and are compared to the results of density functional theory calculations. Good agreement between the measured spectra and the calculated density of states is obtained for most sizes, which gives strong evidence that the correct structures have been found. In particular the results confirm the occurrence of rather different structural motifs in this size range, from fcc-like stacks over fragments of decahedrons to disordered structures.
View Article and Find Full Text PDFWe report the experimental structure determination of cold, mass selected Ag(55)(+/-) cluster ions using the recently developed technique of trapped ion electron diffraction. By comparison of experimental and theoretical molecular scattering functions and consideration of computed total energies, we show that Ag(55)(+) constitutes an ideal Mackay icosahedron, whereas Ag(55)(-) is a weakly Jahn-Teller distorted icosahedron. Isomers of other structural types, for example, decahedral or close-packed, could be ruled out.
View Article and Find Full Text PDF