Publications by authors named "Bernd Urban"

Background: 5-HT(3) receptors are involved in various physiologic functions, including the modulation of emesis. 5-HT(3) antagonists are clinically widely used as potent antiemetics. Emesis is also a side effect of opioid analgesics.

View Article and Find Full Text PDF

Background: 5-Hydroxytryptamine type 3 (5-HT3) receptors are excitatory ligand-gated ion channels which are involved in postoperative nausea and vomiting. They are depressed by the anesthetic propofol, which, in contrast, enhances the activity of inhibitory ligand-gated ion channels such as gamma-aminobutyric acid type A receptors and glycine receptors. To investigate the molecular mechanisms responsible for these contrasting actions, we examined the kinetics of the action of propofol and its lesser hydrophobic derivatives 2-isopropylphenol and phenol on human 5-HT3A receptors.

View Article and Find Full Text PDF

What makes a general anesthetic a general anesthetic? We shall review first what general anesthesia is all about and which drugs are being used as anesthetics. There is neither a unique definition of general anesthesia nor any consensus on how to measure it. Diverse drugs and combinations of drugs generate general anesthetic states of sometimes very different clinical quality.

View Article and Find Full Text PDF

([3H]5-HT)-uptake and patch-clamp techniques were used to study the actions of (+) and (-) tramadol and the active metabolites of tramadol, (+) and (-) O-demethyl-tramadol on the human serotonin (5-HT) transporter and the human 5-HT3A receptor, stably expressed in HEK-293 cells. The (+) and (-) enantiomers of tramadol suppressed the human 5-HT transporter concentration-dependently (IC50=1.0 and 0.

View Article and Find Full Text PDF

Hypothesis: Lidocaine may lead to an alteration in the processing of hearing as observed during tinnitus by inhibiting voltage-gated potassium channels at clinically relevant concentrations.

Background: Recent molecular evidence suggests that the voltage-gated potassium channels Kv 3.1 and Kv 1.

View Article and Find Full Text PDF

The actions of metoclopramide and ergotamine, drugs which are used as a combined migraine medication, on human (h)5-HT3A receptors and 5-HT reuptake carriers, stably expressed in HEK-293 cells, were studied with patch-clamp- and ([3H]5-HT)-uptake techniques. At clinical concentrations, metoclopramide inhibited peak and integrated currents through h5-HT3A receptors concentration-dependently (IC50 = 0.064 and 0.

View Article and Find Full Text PDF

Purpose: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular muscle channels.

Methods: Sodium channels from a preparation of human skeletal muscle were incorporated into planar lipid bilayers, and the steady-state behavior of single sodium channels and their response to pentobarbital was examined in the presence of batrachotoxin, a sodium-channel activator. Single-channel currents were recorded before and after the addition of pentobarbital (0.

View Article and Find Full Text PDF

Background: The spinal H-reflex has been shown to correlate with surgical immobility, i.e., the absence of motor responses to noxious stimulation, during isoflurane anesthesia.

View Article and Find Full Text PDF

Voltage-gated Na+ channels are a main target of many first-line anticonvulsant drugs and their mechanism of action has been extensively investigated in cell lines and native neurons. Nevertheless, it is unknown whether the efficacy of these drugs might be altered following chronic epileptogenesis. We have, therefore, analysed the effects of phenytoin (100 micro m), lamotrigine (100 micro m) and valproate (600 micro m) on Na+ currents in dissociated rat hippocampal granule neurons in the pilocarpine model of chronic epilepsy.

View Article and Find Full Text PDF

The development of resistance to pharmacological treatment is common to many human diseases. In chronic epilepsy, many patients develop resistance to anticonvulsant drug treatment during the course of their disease, with the underlying mechanisms remaining unclear. We have studied cellular mechanisms underlying drug resistance in resected hippocampal tissue from patients with temporal lobe epilepsy by comparing two groups of patients, the first displaying a clinical response to the anticonvulsant carbamazepine and a second group with therapy-resistant seizures.

View Article and Find Full Text PDF

Background: Animal experiments in recent years have shown that attenuation of motor responses by general anesthetics is mediated at least partly by spinal mechanisms. Less is known about the relative potency of anesthetic drugs in suppressing cortical and spinal electrophysiological responses in vivo in humans, particularly those, but not only those, connected with motor responses. Therefore, we studied the effects of sevoflurane and propofol in humans using multimodal electrophysiological assessment.

View Article and Find Full Text PDF