Column leaching tests are a common approach for evaluating the leaching behavior of contaminated soil and waste materials, which are often reused for various construction purposes. Standardized up-flow column leaching tests typically require about 7 days of laboratory work to evaluate long-term leaching behavior accurately. To reduce testing time, we developed linear and ensemble models based on parametric and non-parametric Machine Learning (ML) techniques.
View Article and Find Full Text PDFContamination of soils with per- and polyfluoroalkyl substances (PFAS) (e.g., aqueous film forming foams (AFFFs) or PFAS containing biosolids applied to agricultural soils) can lead to large scale groundwater pollution.
View Article and Find Full Text PDFThe recycling of mineral materials is a sustainable and economical approach for reducing solid waste and saving primary resources. However, their reuse may pose potential risks of groundwater contamination, which may result from the leaching of organic and inorganic substances into water that percolates the solid waste. In this study, column leaching tests were used to investigate the short- and long-term leaching behavior of "salts", "metals", and organic pollutants such as PAHs and herbicides from different grain size fractions of construction & demolition waste (CDW) and railway ballast (RB) after a novel treatment process.
View Article and Find Full Text PDFPFAS contaminated compost materials have been applied over the last few decades to agricultural fields in Germany, resulting in large-scale diffuse PFAS plumes. The leaching behavior of PFAS from the first two identified contaminated agricultural sites in Germany were investigated, one at Brilon-Scharfenberg, North Rhine-Westphalia Site (BS-NRW), and the other at Rastatt/Mannheim, Baden-Württemberg. The specific objectives of this study were to assess the longevity of the PFAS agricultural sources and compare standardized column percolation tests to long-term leaching of PFAS from contaminated sites.
View Article and Find Full Text PDFIn this contribution we give a first general overview of results of recent studies in Germany which focused on contaminant leaching from various materials and reactive solute transport in the unsaturated soil zone to identify the key factors for groundwater risk assessment. Based on these results we developed new and improved existing methods for groundwater risk assessment which are used to derive a new regulatory concept for the upcoming "Decree for the Requirements of the Use of Alternative Mineral Building Materials in Technical Constructions and for the Amendment of the Federal Soil Protection and Contaminated Sites Ordinance" of the German Federal Ministry of Environment. The new concept aims at a holistic and scientifically sound assessment of the use of mineral recycling materials (e.
View Article and Find Full Text PDFLeaching tests are becoming more relevant in assessing solid waste material, particularly with respect to groundwater risks. In the field, water infiltration is the dominant leaching mechanism, which is simulated in the lab with batch and column tests. In this study, we compared percolation, through analytical solutions of the advection-dispersion equation, to laboratory batch and sequential leaching tests.
View Article and Find Full Text PDF