Publications by authors named "Bernd Schwenzer"

Background: In addition to conventional chemotherapeutics, nucleic acid-based therapeutics like antisense oligodeoxynucleotides (AS-ODN) represent a novel approach for the treatment of bladder cancer (BCa). An efficient delivery of AS-ODN to the urothelium and then into cancer cells might be achieved by the local application of multi-walled carbon nanotubes (MWCNT). In the present study, pristine MWCNT and MWCNT functionalized with hydrophilic moieties were synthesized and then investigated regarding their physicochemical characteristics, dispersibility, biocompatibility, cellular uptake and mucoadhesive properties.

View Article and Find Full Text PDF

Purpose: Previous in vitro studies have shown that DNA oligonucleotides (ODN) can be successfully used as anchor strands for the binding and retarded release of biologically active recombinant human bone morphogenetic protein 2 (rhBMP-2). The aim of the present study was to test the hypothesis that rhBMP-2 bound to the surface of titanium implants through hybridization with nano-anchored ODN strands is biologically active and can enhance the induction of osteogenic markers in peri-implant bone in vivo.

Materials And Methods: Custom-made, surface acid-etched (SAE) titanium discs and implants were coated with ODN anchor strands and subsequently hybridized with complementary ODN strands conjugated to rhBMP-2 (AS_CS_BMP-2).

View Article and Find Full Text PDF

Immobilization of bioactive molecules (BAMs) on a nanometer scale is of great interest for functionalization of implant and scaffold surfaces in current biomaterials research. A system for immobilization of one or more compounds is described, which is based on nanomechanical fixation of single-stranded nucleic acids into an anodic titanium oxide layer and their subsequent hybridization with BAMs conjugated to the respective complementary strands. This paper focuses on further development and in depth understanding of the immobilization system, as some of the major findings established for common sensor applications for immobilization of single-stranded DNA onto gold surfaces cannot be transferred to the TiO2 surface.

View Article and Find Full Text PDF

Aims: To test the immobilization of vascular endothelial growth factor (VEGF165 ) on the surface of titanium implants using DNA oligonucleotide (ODN) anchor strands for the ability to enhance periimplant bone formation.

Materials And Methods: DNA oligonucleotides were anchored to the surface of sandblasted acid-etched (SAE) titanium screw implants and were hybridized with complementary strands of ODN conjugated to rhVEGF165 . The implants were tested against blank SAE implants and SAE implants with nano-anchored ODN.

View Article and Find Full Text PDF

In order to increase the effectiveness of therapeutics for bladder carcinoma (BCa) treatment, alternative strategies for intravesical applications are needed. The use of carbon nanotubes (CNTs) as basis for a multifunctional drug transporter is a promising possibility to combine traditional chemotherapeutics with innovative therapeutic agents such as antisense oligodeoxynucleotides or small interfering RNA. In the current study four CNT types varying in length and diameter (CNT-1, CNT-2, CNT-3, CNT-4) were synthesized and then characterized with different spectroscopic techniques.

View Article and Find Full Text PDF

The present study describes a novel versatile immobilization system for the modification of implant materials with biologically active molecules (BAMs), e.g. antibiotics or growth factors.

View Article and Find Full Text PDF

The use of DNA-based therapeutics requires efficient delivery systems to transport the DNA to their place of action within the cell. To accomplish this, we investigated multiwalled carbon nanotubes (pristine MWCNT, p-MWCNT) functionalized with hydroxyl groups via 1,3-dipolar cycloaddition. In this way, we have obtained MWCNT-f-OH with improved stability in aqueous dispersions which is an advantageous property for their use in cellular environments.

View Article and Find Full Text PDF

Specific surface binding peptides offer a versatile and interesting possibility for the development of biocompatible implant materials. Therefore, eight peptide sequences were examined in regard to their adsorption on zirconium oxide (ZrO2), titanium zircon (TiZr), and titanium (c.p.

View Article and Find Full Text PDF

The aim of the present study was to test the biocompatibility and functionality of orthopaedic bone implants with immobilized oligonucleotides serving as anchor stands for rhBMP-2 and rhVEGF-A conjugated with complementary oligonucleotides in an osteoporotic rat model. Al2O3-blasted acid etched Ti6Al4V implants, carrying oligonucleotide anchor strands and hybridized with rhBMP-2 or rhVEGF-A through complementary 31-mer oligonucleotide stands were inserted into the proximal tibia of ovariectomized rats. At the time of surgery (15 weeks after ovariectomy) microCT analysis showed significantly lower bone mineral density compared to non-ovariectomized animals.

View Article and Find Full Text PDF

Herein we describe the use of peptide linkers to establish a nucleic acid-based immobilization system based on biphasic calcium phosphates (BCP), with which different molecules can be immobilized at the same time in defined ratios. It consists of single-stranded oligonucleotides, anchor strands (AS) which are immobilized to the surface and conjugates of complementary strands (CS) and bioactive molecules that bind to the AS via Watson-Crick base pairing. AS immobilization can be achieved on calcium phosphate ceramics using conjugates of AS and peptides that bind specifically to the ceramic.

View Article and Find Full Text PDF

The aim of the present study was to test the hypothesis that oligonucleotides can be used for anchorage and slow release of osteogenic growth factors such as BMP to enhance the osteogenic activity of a titanium implant surface. Strands of 60-mer non-coding DNA oligonucleotides (ODN) were bound to an acid-etched sandblasted cp Ti-surface by nanomechanical fixation using anodic polarization. RhBMP2 that had been conjugated to complementary strands of DNA oligonucleotides was then bound to the anchored ODN strands by hybridization.

View Article and Find Full Text PDF

Surface functionalization with bioactive molecules (BAMs) on a nanometre scale is a main field in current biomaterial research. The immobilization of a vast number of substances and molecules, ranging from inorganic calcium phosphate phases up to peptides and proteins, has been investigated throughout recent decades. However, in vitro and in vivo results are heterogeneous.

View Article and Find Full Text PDF

A new concept for modular biosurface engineering of titanium implants based on the self-assembly of complementary oligonucleotides was biochemically investigated and optimized. This study describes the synthesis and characterization (RP-HPLC and Sakaguchi assay) of oligodeoxyribonucleotide (ODN) conjugates of the hexapeptide GRGDSP containing the RGD sequence as the recognition motif for cellular adhesion receptors (integrins). The peptide was chosen exemplarily as a model molecule, because it is a simple but potent bioactive molecule and relatively well investigated.

View Article and Find Full Text PDF

This paper describes the immobilization of bioactive molecules on titanium based surfaces through a combination of nano-mechanical fixation of nucleic acid anchor strands (ASs) by partial and regioselective incorporation within an anodic oxide layer and their hybridization with complementary strands (CSs) intended to be conjugated to bioactive molecules. We focus on the interaction between the substrate surface and the anchor strands, the integrity of ASs and their hybridization ability. The observed dependence of adsorption on pH suggests that initial interaction of terminally phosphorylated ASs with the substrate surface is mediated by electrostatic interaction.

View Article and Find Full Text PDF

Selection of optimal antisense constructs is still a problem. Among a huge number of antisense oligonucleotides (AS-ONs) only a small piece show inhibitory efficacy. We want to develop an enhanced strategy for specific selection of effective AS-ONs based on prediction of secondary structure of the target messenger RNA (mRNA) and analysis of thermodynamic properties of the mRNA/AS-ON hybrid.

View Article and Find Full Text PDF

Since cancer cells are characterised by multiple genetic alterations the single inhibition of one tumour- associated gene might not be sufficient as a therapeutic strategy. We examined the effects of a combined inhibition of survivin, human telomerase reverse transcriptase (hTERT) and vascular endothelial growth factor (VEGF) with antisense oligodeoxynucleotides (AS-ODNs) and small interfering RNAs (siRNAs) in EJ28 and 5637 bladder cancer (BCa) cells. Following verification of the uptake of intraperitoneally applied fluorescence-labelled AS-ODNs and siRNAs in subcutaneous BCa xenografts, the target-directed constructs were tested as single agents in SCID mice bearing subcutaneous EJ28.

View Article and Find Full Text PDF

We compared an antisense-oligodeoxynucleotide and four DNAzymes directed to the prothrombin mRNA for their efficiency to reduce prothrombin transcript level in HepG2 cells. The DNAzymes have different binding arm symmetry and cleavage sites, but are directed to the identical target site of the antisense-oligodeoxynucleotide. The nucleic acid-based inhibitors were transfected into HepG2 cells and prothrombin transcript level was quantified and normalized to the beta-actin transcript level by multiplex PCR.

View Article and Find Full Text PDF

Hypoxia causes upregulation of vascular endothelial growth factor (VEGF) which is a key regulator in tumor angiogenesis and essential for the proliferation of endothelial cells. Endothelial cells have been described to accumulate radiotracers like (18)F-FDG. However, the contribution of radiotracer uptake by endothelial cells to uptake measured in tumors by positron emission tomography (PET) is still unclear.

View Article and Find Full Text PDF

To improve cell seeding efficiency and cytocompatibility, we designed a new coating material for scaffolds. We used aptamers, highly specific cell binding nucleic acids generated by combinatorial chemistry with an in vitro selection called systematic evolution of exponential enrichment (SELEX). In this study, we functionalized Ti-alloy surfaces to enhance cell adhesion.

View Article and Find Full Text PDF

Introduction: The development of novel antithrombotic agents directly affecting gene expression requires well established, reliable and useful in vitro model systems for initial validation of drug effects. Since most proteins involved in coagulation are synthesized by the liver, the hepatoblastoma cell line Hep G2 is introduced, here, as a model system to test nucleic acid based coagulation inhibitors.

Methods: Hep G2 cells were characterized with respect to prothrombin, tissue factor and factor VIII expression in dependence of cell culture conditions.

View Article and Find Full Text PDF

The development of antisense oligonucleotides (AS-ODN) always had the limitation that because of complex mRNA secondary structures, not every designed AS-ODN inhibited the expression of its target. There have been many investigations to overcome this problem in the last few years. This produced a great deal of theoretical and empirical findings about characteristics of effective AS-ODNs in respect to their target regions but no standardized selection procedure of AS-ODN target regions within a given mRNA or standardized design of AS-ODNs against a specific target region.

View Article and Find Full Text PDF

This review summarizes data demonstrating the role of TF in tumor development, metastasis and angiogenesis. TF is a transmembrane protein that is expressed constitutively in some kinds of extravascular cells and transiently in intravascular cells after stimulation with cytokines and growth factors. Originally TF was considered to have a function in the initiation of coagulation.

View Article and Find Full Text PDF

Purpose: Due to unsatisfactory success in the treatment of local and systemic bladder cancer and the low response rates to commonly used chemotherapy (CT) alternative and additive approaches must be found. The function of vascular endothelial growth factor (VEGF) in neo-angiogenesis and, therefore, in solid tumors makes it a promising target for a specific antitumor therapy. We investigated the possibility of sensitizing transitional bladder cancer cell lines to CT by pretreatment with VEGF antisense (AS) oligodeoxynucleotides (AS-ODNs).

View Article and Find Full Text PDF

Human tissue factor (TF) is the initiator of blood coagulation. Beside this function it is involved in tumor angiogenesis and metastasis. In the study we have evaluated the efficiency of antisense oligonucleotides (AS-ODNs) against TF selected from computational prediction of TF mRNA structure.

View Article and Find Full Text PDF

Angiogenesis plays a key role in tumor growth and metastasis. Vascular endothelial growth factor (VEGF) is one of the major angiogenic factors. In the study we have evaluated the efficiency of antisense oligodeoxynucleotides (AS-ODN) against VEGF selected from computational prediction of VEGF mRNA structure.

View Article and Find Full Text PDF