Purpose: The aim of this study was to investigate the pharmacokinetics of cefpodoxime in interstitial tissue fluids (skeletal muscle and lung) in rats by microdialysis, and to examine the relationship between free drug levels in plasma and in tissues.
Methods: Cefpodoxime was administered to anesthetized male Wistar rats as single intravenous bolus of 10 or 20 mg/kg and constant infusion of 260 microg/h with a loading dose. The protein binding of cefpodoxime in rat plasma was determined using ultrafiltration.
Microdialysis is a technique that allows the measurement of free antibiotic concentrations in different tissues, which are responsible for the antibacterial activity at the infection site. In an open, randomized, 2-way crossover study in healthy volunteers, the muscle penetration of orally administered cefpodoxime (400 mg) and cefixime (400 mg) was compared using microdialysis. The results show that the total plasma concentration-time profiles of each antibiotic were similar; the area under the curve for cefpodoxime was 22.
View Article and Find Full Text PDFThe bacterial time-kill curves of cefpodoxime and cefixime against four bacterial strains (Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae/penicillin sensitive and S. pneumoniae/penicillin intermediate) were compared in in vitro infection models in which various human pharmacokinetic profiles of unbound antibiotic were simulated. This approach offers more detailed information than the minimum inhibitory concentration (MIC) does about the time course of antibacterial efficacy of an antibiotic.
View Article and Find Full Text PDFMicrodialysis is a technique that allows the measurement of concentrations of free antibiotic in tissue. The free antibiotic concentration is responsible for the antibacterial effect at the target site. We used microdialysis in animal and human studies to investigate the tissue penetration of cefpodoxime.
View Article and Find Full Text PDF