The space of advanced therapeutic modalities is currently evolving in rapid pace necessitating continuous improvement of analytical quality control methods. In order to evaluate the identity of nucleic acid species in gene therapy products, we propose a capillary electrophoresis-based gel free hybridization assay in which fluorescently labeled peptide nucleic acids (PNAs) are applied as affinity probes. PNAs are engineered organic polymers that share the base pairing properties with DNA and RNA but have an uncharged peptide backbone.
View Article and Find Full Text PDFCharacterization of charge heterogeneity is an essential pillar for pharmaceutical development and quality control of therapeutic monoclonal antibodies (mAbs). The highly selective and commonly applied capillary zone electrophoresis (CZE) method containing high amounts of ε-aminocaproic acid (EACA) provides a detailed and robust charge heterogeneity profile of intact mAb variants. Nevertheless, the exact location of protein modifications within these charge profiles remains ambiguous.
View Article and Find Full Text PDFImaged capillary isoelectric focusing (iCIEF) has emerged as an important technique for therapeutic monoclonal antibody (mAb) charge heterogeneity analysis in the biopharmaceutical context, providing imaged detection and quantitation by UV without a mobilization step. Besides quantitation, the characterization of separated charge variants ideally directly by online electrospray ionization-mass spectrometry (ESI-MS) is crucial to ensure product quality, safety, and efficacy. Straightforward direct iCIEF-MS coupling combining high separation efficiency and quantitative results of iCIEF with the characterization power of MS enables deep characterization of mAb charge variants.
View Article and Find Full Text PDFSize heterogeneity analysis by capillary sieving electrophoresis utilizing sodium dodecyl sulfate (CE(SDS)) with optical detection is a major method applied for release and stability testing of monoclonal antibodies (mAbs) in biopharmaceutical applications. Identification of mAb-fragments and impurities observed with CE(SDS) is of outstanding importance for the assessment of critical quality attributes and development of the analytical control system. Mass spectrometric (MS) detection is a powerful tool for protein identification and characterization.
View Article and Find Full Text PDFOxidative damage of biopharmaceuticals during manufacturing and storage is a key concern throughout pharmaceutical development. However, few simple and robust analytical methods are available for the determination of oxidation sites. Here, the potential of affinity capillary electrophoresis (ACE) in the separation of proteins with oxidized methionine (Met) residues is shown.
View Article and Find Full Text PDFCapillary sieving electrophoresis utilizing SDS (CE(SDS)) is one of the most applied methods for the analysis of antibody (mAb) size heterogeneity in the biopharmaceutical industry. Inadequate peak identification of observed protein fragments is still a major issue. In a recent publication, we introduced an electrophoretic 2D system, enabling online mass spectrometric detection of generic CE(SDS) separated peaks and identification of several mAb fragments.
View Article and Find Full Text PDFSodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is the fundamental technique for protein separation by size. Applying this technology in capillary format, gaining high separation efficiency in a more automated way, is a key technology for size separation of proteins in the biopharmaceutical industry. However, unequivocal identification by online mass spectrometry (MS) is impossible so far, due to strong interference in the electrospray process by SDS and other components of the SDS-MW separation gel buffer.
View Article and Find Full Text PDFCharge heterogeneity profiling is important for the quality control (QC) of biopharmaceuticals. Because of the increasing complexity of these therapeutic entities [1], the development of alternative analytical techniques is needed. In this work, flow-through partial-filling affinity capillary electrophoresis (FTPFACE) has been established as a method for the analysis of a mixture of two similar monoclonal antibodies (mAbs).
View Article and Find Full Text PDFCZE is a well-established technique for charge heterogeneity testing of biopharmaceuticals. It is based on the differences between the ratios of net charge and hydrodynamic radius. In an extensive intercompany study, it was recently shown that CZE is very robust and can be easily implemented in labs that did not perform it before.
View Article and Find Full Text PDFCapillary zone electrophoresis (CZE) is a powerful tool that is progressively being applied for the separation of monoclonal antibody (mAb) charge variants. Mass spectrometry (MS) is the desired detection method concerning identification of mAb variants. In biopharmaceutical applications, there exist optimized and validated electrolyte systems for mAb variant quantification.
View Article and Find Full Text PDFCapillary electrophoresis is an important technique for the characterization of monoclonal antibodies (mAbs), especially in the pharmaceutical context. However, identification is difficult as upscaling and hyphenation of used methods directly to mass spectrometry is often not possible due to separation medium components that are incompatible with MS detection. Here a CE-MS method for the analysis of mAbs is presented analyzing SDS-complexed samples.
View Article and Find Full Text PDFElectrophoresis
March 2017
During the last years there was a substantial increase in the use of antibodies and related proteins as therapeutics. The emphasis of the pharmaceutical industry is on IgG1, IgG2, and IgG4 antibodies, which are therefore in the focus of this article. In order to ensure appropriate quality control of such biopharmaceuticals, deep understanding of their chemical degradation pathways and the resulting impact on potency, pharmacokinetics, and safety is required.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2015
Within pharmaceutical industry charge heterogeneity testing of biopharmaceuticals has to be reproducible and fast. It should pass method validation according to ICH Q2. Classical approaches for the analysis of the charge heterogeneity of biopharmaceuticals are ion exchange chromatography (IEC) and isoelectric focusing (IEF).
View Article and Find Full Text PDFThe degradation of proteins by asparagine deamidation and aspartate isomerization is one of several chemical degradation pathways for recombinant antibodies. In this study, we have identified two solvent accessible degradation sites (light chain aspartate-56 and heavy chain aspartate-99/101) in the complementary-determining regions of a recombinant IgG1 antibody susceptible to isomerization under elevated temperature conditions. For both hot-spots, the degree of isomerization was found to be significantly higher than the deamidation of asparagine-(387, 392, 393) in the conserved CH3 region, which has been identified as being solvent accessible and sensitive to chemical degradation in previous studies.
View Article and Find Full Text PDFfaoA, the gene of the dye-linked NAD(P)-independent quinone-containing formaldehyde dehydrogenase of methylamine-grown Hyphomicrobium zavarzinii strain ZV 580 was sequenced and analyzed together with an apparent promoter region and adjoining genes in a 7.2-kb fragment of hyphomicrobial DNA. The formaldehyde dehydrogenase, identified as a periplasmic enzyme by its signal sequence, is distantly related to the soluble pyrroloquinoline-quinone-dependent glucose dehydrogenase of Acinetobacter calcoaceticus and to other predicted glucose dehydrogenase sequences.
View Article and Find Full Text PDFThe function of a protein is modulated by its abundance and its degree of specific post-translational modifications such as phosphorylation, glycosylation or truncation. Consequently, changes of protein concentration and the extent of their post-translational modifications has a great influence on the activity of intracellular substrate degradation processes, on the activity of intracellular biosynthetic pathways, on the cell cycle or on the function of a single cell in a whole organism. Defects in this area lead to diseases like cancer or neurodegeneration.
View Article and Find Full Text PDFCorynebacterium glutamicum is an important organism for the industrial production of amino acids such as lysine. In the present study time-dependent changes in the oxidative pentose phosphate pathway activity, an important site of NADPH regeneration in C. glutamicum, are investigated, whereby intracellular metabolite concentrations and specific enzyme activities in two isogenic leucine auxotrophic strains differing only in the regulation of their aspartate kinases were compared.
View Article and Find Full Text PDF