Publications by authors named "Bernd GoldfuSS"

Taxa-4,11-diene is made by the taxa-4,11-diene synthase (TxS) from Taxus brevifolia. The unique reactivity of the taxane system is characterised by long distance hydrogen migrations in the biosynthesis. This study demonstrates that selective long range hydrogen migrations also play a role in the high energy process of the EI-MS fragmentation of taxa-4,11-diene.

View Article and Find Full Text PDF

The supramolecular resorcinarene hexameric capsule efficiently promotes the unprecedented reaction between isocyanides and electron-deficient aromatic aldehydes leading to the formation of imines and carbon monoxide. The mechanism of the reaction was investigated via isotope labelling, kinetic analysis of the reaction, computational studies and the independent synthesis of a proposed intermediate. Control experiments indicate that the formation of the key aziridinone intermediate is limited to the cavity of the capsule.

View Article and Find Full Text PDF

Two diterpene synthases from the bacterium Chitinophaga pinensis were characterised. The first enzyme mainly produced the rearranged diterpene palmatol, a compound known from octocorals, while the second enzyme made the new coral-type eunicellane chitinol. The mechanisms of both enzymes were deeply studied through isotopic labelling experiments, DFT calculations, and with a substrate analog containing a saturated double bond, resulting in the formation of derailment products that gave additional insights into the nature of the cyclisation cascade intermediates.

View Article and Find Full Text PDF

Chlororaphens A and B are structurally unique non-canonical C sesquiterpenoids from Pseudomonas chlororaphis that are made by two SAM-dependent methyltransferases and a type I terpene synthase. This study addresses the mechanism of their formation in isotopic labelling experiments and DFT calculations. The results demonstrate an astonishing complexity with distribution of labellings within a cyclopentane core that is reversely connected to two acyclic fragments in chlororaphen A and B.

View Article and Find Full Text PDF

The biosynthesis of six recently reported non-canonical C sesquiterpenoids named after ancient Greek philosophers, archimedene, aristotelene, eratosthenene, pythagorene, α-democritene and anaximandrene, was investigated through density functional theory (DFT) calculations and isotopic labeling experiments. The results revealed for all compounds except archimedene a unique fragmentation-recombination mechanism as previously demonstrated for sodorifen biosynthesis, in addition to a remarkable "dancing" mechanism for anaximandrene biosynthesis.

View Article and Find Full Text PDF

Two terpene synthases from the pleuromutilin producing fungus were functionally characterised. The first enzyme CpTS1 produces the new diterpene clitopilene with a novel 6-6-5-5 tetracyclic skeleton, while the second enzyme CpTS2 makes the new sesquiterpene isopentalenene. The CpTS1 reaction mechanism was studied in depth using experimental and theoretical approaches.

View Article and Find Full Text PDF

Mining of two multiproduct sesterterpene synthases from Lentzea atacamensis resulted in the identification of the synthases for lentzeadiene (LaLDS) and atacamatriene (LaATS). The main product of LaLDS (lentzeadiene) is a new compound, while one of the side products (lentzeatetraene) is the enantiomer of brassitetraene B and the other side product (sestermobaraene F) is known from a surprisingly distantly related sesterterpene synthase. LaATS produces six new compounds, one of which is the enantiomer of the known sesterterpene Bm1.

View Article and Find Full Text PDF

The substrate analogue 19-nor-geranylgeranyl diphosphate (19-nor-GGPP) was synthesised and incubated with 20 diterpene synthases, resulting in the formation of diterpenoids in all cases. A total of 23 different compounds were isolated from these enzyme reactions and structurally characterised, if possible including the experimental determination of absolute configurations through a stereoselective deuteration approach. In several cases the missing 19-Me group in the substrate analogue resulted in opening of completely new reaction paths towards compounds with novel skeletons.

View Article and Find Full Text PDF

The diterpene synthase AlTS was identified from Aspergillus luchuensis. AlTS catalyses the formation of the diterpene hydrocarbon spiroluchuene A, which exhibits a novel skeleton characterised by a spirocyclic ring system. The cyclisation mechanism towards this compound was elucidated through isotopic labelling experiments in conjunction with DFT calculations and metadynamic simulations.

View Article and Find Full Text PDF

Mining of a terpene synthase from Streptomyces subrutilus resulted in the identification of the hexacyclic sesterterpene subrutilane, besides eight pentacyclic side products. Subrutilane represents the first case of a saturated sesterterpene hydrocarbon. Its structure, including the absolute configuration, was unambiguously determined through X-ray crystallographic analysis and stereoselective deuteration.

View Article and Find Full Text PDF

In the past decade, there has been an increased interest in applying supramolecular capsule and cage catalysis to the current challenges in synthetic organic chemistry. In this context, we recently reported the resorcin[4]arene capsule-catalyzed conversion of α-glycosyl halides into β-glycosides with high selectivity. Interestingly, this methodology enabled the formation of a wide range of β-pyranosides as well as β-furanosides, although these two donor classes exhibit different reactivities and usually require different reaction conditions and catalysts.

View Article and Find Full Text PDF

A gene coding for a terpene synthase homolog from Kitasatospora viridis was cloned and expressed in Escherichia coli. The purified recombinant protein possessed sesterterpene synthase activity and efficiently converted geranylfarnesyl diphosphate (GFPP) with 19 % yield into the sesterterpene hydrocarbon sesterviridene A. Large scale enzymatic conversions also allowed for the isolation of two side products that are generated with very low yields of ca.

View Article and Find Full Text PDF

Terpenes constitute the largest class of natural products. Their skeletons are formed by terpene cyclases (TCs) from acyclic oligoprenyl diphosphates through sophisticated enzymatic conversions. These enzyme reactions start with substrate ionization through diphosphate abstraction, followed by a cascade reaction via cationic intermediates.

View Article and Find Full Text PDF

A sesquiterpene synthase from was discovered and shown to produce kitaviridene, a sesquiterpene hydrocarbon with an additional methyl group equivalent in comparison to a regular sesquiterpene. Isotopic labeling experiments together with DFT calculations gave detailed insights into the cyclization cascade toward kitaviridene and explained the formation of the additional methyl group equivalent.

View Article and Find Full Text PDF

The sesterviolene synthase from Streptomyces violens was identified and represents the second known sesterterpene synthase from bacteria. Isotopic labelling experiments in conjunction with DFT calculations were performed that provided detailed insight into its complex cyclisation mechanism. Enzyme engineering through site-directed mutagenesis gave access to a high-yielding enzyme variant that provided six additional minor products and the main product in sufficient quantities to study its chemistry.

View Article and Find Full Text PDF

The multiproduct chimeric sesterterpene synthase AcAS from Aspergillus calidoustus yielded spirocyclic calidoustene, which exhibits a novel skeleton, besides five known sesterterpenes. The complex cyclisation mechanism to all six compounds was investigated by isotopic labelling experiments in combination with DFT calculations. Chemically synthesised 8-hydroxyfarnesyl diphosphate was converted with isopentenyl diphosphate and AcAS into four oxygenated sesterterpenoids that structurally resemble cytochrome P450 oxidation products of the sesterterpene hydrocarbons.

View Article and Find Full Text PDF

Different mechanisms for the cyclisation of farnesyl pyrophosphate to patchoulol by the patchoulol synthase are discussed in the literature. They are based on isotopic labelling experiments, but the results from these experiments are contradictory. The present work reports on a reinvestigation of patchoulol biosynthesis by isotopic labelling experiments and computational chemistry.

View Article and Find Full Text PDF

A reinvestigation of the linalool synthase from Chryseobacterium polytrichastri uncovered its diterpene synthase activity, yielding polytrichastrene A and polytrichastrol A with new skeletons, besides known wanju-2,5-diene and thunbergol. The enzyme mechanism was investigated by isotopic labeling experiments and DFT calculations to explain an unusual ethyl group formation. Rationally designed exchanges of active site residues showed major functional switches, resulting for I66F in the production of five more new compounds, including polytrichastrene B and polytrichastrol B, while A87T, A192V and the double exchange A87T, A192V gave a product shift towards wanju-2,5-diene.

View Article and Find Full Text PDF

A systematic computational study addressing the entire chemical space of guaianes in conjunction with an analysis of all known compounds shows that 1,3-hydride shifts are rare events in guaiane biosynthesis. As demonstrated here, 1,3-hydride shifts towards guaianes can only be realized for two stereochemically well defined out of numerous possible stereoisomeric skeletons. One example is given by the mechanism of guaia-4(15)-en-11-ol synthase from California poplar, an enzyme that yields guaianes with unusual stereochemical properties.

View Article and Find Full Text PDF

The Ir-catalyzed conversion of prochiral tert-cyclobutanols to β-methyl-substituted ketones proceeds under comparably mild conditions in toluene (45-110 °C) and is particularly suited for the enantioselective desymmetrization of β-oxy-substituted substrates to give products with a quaternary chirality center with up to 95 % ee using DTBM-SegPhos as a chiral ligand. Deuteration experiments and kinetic isotope effect measurements revealed major mechanistic differences to related Rh -catalyzed transformations. Supported by DFT calculations we propose the initial formation of an Ir hydride intermediate, which then undergoes a β-C elimination (C-C bond activation) prior to reductive C-H elimination.

View Article and Find Full Text PDF

Two bacterial diterpene synthases (DTSs) from Chryseobacterium were characterised. The first enzyme yielded the new compound chryseodiene that closely resembles the known fusicoccane diterpenes from fungi, but its experimentally and computationally studied cyclisation mechanism is fundamentally different to the mechanism of fusicoccadiene synthase. The second enzyme produced wanjudiene, a diterpene hydrocarbon with a new skeleton, besides traces of the enantiomer of bonnadiene that was recently discovered from Allokutzneria albata.

View Article and Find Full Text PDF

The fluorescence emission of the parent 2-aminobenzimidazole (ABZ, ), the mono- and disubstituted derivatives (, ), 2-aminonaphthoimidazole (), and 4-amino dinaphthodiazepine (λ = 315-400 nm) is strongly quenched in the presence of aqueous hydrogen peroxide. The quenching process is dual: for diazepine , quenching is dynamic at lower HO concentrations with linear reduction of the fluorescence lifetime from 4.3 to 2.

View Article and Find Full Text PDF

The serine hydrolase monoacylglycerol lipase (MAGL) is involved in a plethora of pathological conditions, in particular pain and inflammation, various types of cancer, metabolic, neurological and cardiovascular disorders, and is therefore a promising target for drug development. Although a large number of irreversible-acting MAGL inhibitors have been discovered over the past years, there are only few compounds known so far which inhibit the enzyme in a reversible manner. Therefore, much effort is put into the development of novel chemical entities showing reversible inhibitory behavior, which is thought to cause less undesired side effects.

View Article and Find Full Text PDF