The dimensions of axons and synaptic terminals determine cell-intrinsic properties of neurons; however, the cellular mechanisms selectively controlling establishment and maintenance of neuronal compartments remain poorly understood. Here, we show that two giant Drosophila Ankyrin2 isoforms, Ank2-L and Ank2-XL, and the MAP1B homolog Futsch form a membrane-associated microtubule-organizing complex that determines axonal diameter, supports axonal transport, and provides independent control of synaptic dimensions and stability. Ank2-L controls microtubule and synaptic stability upstream of Ank2-XL that selectively controls microtubule organization.
View Article and Find Full Text PDFThe cytoskeleton forms the backbone of neuronal architecture, sustaining its form and size, subcellular compartments and cargo logistics. The synaptic cytoskeleton can be categorized in the microtubule-based core cytoskeleton and the cortical membrane skeleton. While central microtubules form the fundamental basis for the construction of elaborate neuronal processes, including axons and synapses, cortical actin filaments are generally considered to function as mediators of synapse dynamics and plasticity.
View Article and Find Full Text PDFDuring development of the Drosophila nervous system, migrating motor axons contact and interact with different cell types before reaching their peripheral muscle fields. The axonal attractant Sidestep (Side) is expressed in most of these intermediate targets. Here, we show that motor axons recognize and follow Side-expressing cell surfaces from the ventral nerve cord to their target region.
View Article and Find Full Text PDFSynaptic connections are stabilized through transsynaptic adhesion complexes that are anchored in the underlying cytoskeleton. The Drosophila neuromuscular junction (NMJs) serves as a model system to unravel genes required for the structural remodeling of synapses. In a mutagenesis screen for regulators of synaptic stability, we recovered mutations in Drosophila ankyrin 2 (ank2) affecting two giant Ank2 isoforms that are specifically expressed in the nervous system and associate with the presynaptic membrane cytoskeleton.
View Article and Find Full Text PDF