Publications by authors named "Bernd Elsler"

The dehydrogenative cross-coupling of aniline derivatives to 2,2'-diaminobiaryls is reported. The oxidation is carried out electrochemically, which avoids the use of metals and reagents. A large variety of biphenyldiamines were thus prepared.

View Article and Find Full Text PDF

The anodic C-C cross-coupling reaction is a versatile synthetic approach to symmetric and non-symmetric biphenols and arylated phenols. We herein present a metal-free electrosynthetic method that provides access to symmetric and non-symmetric meta-terphenyl-2,2''-diols in good yields and high selectivity. Symmetric derivatives can be obtained by direct electrolysis in an undivided cell.

View Article and Find Full Text PDF

Solvents such as 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with a high capacity for donating hydrogen bonds generate solvates that enter into selective cross-coupling reactions of aryls upon oxidation. When electric current is employed for oxidation, reagent effects can be excluded and a decoupling of nucleophilicity from oxidation potential can be achieved. The addition of water or methanol to the electrolyte allows a shift of oxidation potentials in a specific range, creating suitable systems for selective anodic cross-coupling reactions.

View Article and Find Full Text PDF

The direct oxidative cross-coupling of phenols is a very challenging transformation, as homo-coupling is usually strongly preferred. Electrochemical methods circumvent the use of oxidizing reagents or metal catalysts and are therefore highly attractive. Employing electrolytes with a high capacity for hydrogen bonding, such as methanol with formic acid or 1,1,1,3,3,3-hexafluoro-2-propanol, a direct electrolysis in an undivided cell provides mixed 2,2'-biphenols with high selectivity.

View Article and Find Full Text PDF

C,C cross-coupling reactions for the synthesis of nonsymmetrical biaryls represent one of the most significant transformations in contemporary organic chemistry. A variety of useful synthetic methods have been developed in recent decades, since nonsymmetrical biaryls play an evident role in natural product synthesis, as ligand systems in homogeneous catalysis and materials science. Transformation of simple arenes by direct C,H activation belongs to the cutting-edge strategies for creating biaryls; in particular the 2-fold C,H activation is of significant interest.

View Article and Find Full Text PDF