Abandonment of agricultural lands promotes the global expansion of secondary forests, which are critical for preserving biodiversity and ecosystem functions and services. Such roles largely depend, however, on two essential successional attributes, trajectory and recovery rate, which are expected to depend on landscape-scale forest cover in nonlinear ways. Using a multi-scale approach and a large vegetation dataset (843 plots, 3511 tree species) from 22 secondary forest chronosequences distributed across the Neotropics, we show that successional trajectories of woody plant species richness, stem density and basal area are less predictable in landscapes (4 km radius) with intermediate (40-60%) forest cover than in landscapes with high (greater than 60%) forest cover.
View Article and Find Full Text PDFThere is a pressing need to assess resilience of coastal ecosystems against sea level rise. To develop appropriate response strategies against future climate disturbances, it is important to estimate the magnitude of disturbances that these ecosystems can absorb and to better understand their underlying processes. Hammocks (petenes) coastal ecosystems are highly vulnerable to sea level rise linked to climate change; their vulnerability is mainly due to its close relation with the sea through underground drainage in predominantly karstic soils.
View Article and Find Full Text PDFWe combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates.
View Article and Find Full Text PDFThe high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e.
View Article and Find Full Text PDFWetland tree species are of importance for economic and restoration purposes. We describe the germination process and seedling morphology of six arboreal native species typical of Southeastern Mexico: Annona glabra, Ceiba pentandra, Pachira aquatica, Haematoxylum campechianum, Coccoloba barbadensis and Crataeva tapia. A total of 300 seeds per species were planted in a mixture of sand, cocoa plant husk and black soil (1:1:1), and maintained in a tree nursery with 30% artificial shade, from February to November of 2007.
View Article and Find Full Text PDFBetween August 2003 and August 2005 we registered the flowering and fruiting of 75 tree species (341 individual trees) in a tropical rain forest at Tenosique, Tabasco, Mexico. Monthly we checked five transects (500 m long; 5 m wide). To test the homogeneity of flowering and fruiting during the year, and between adjacent months, we applied a chi2 test.
View Article and Find Full Text PDF