A 26-year-old woman presented a superior sagittal and transverse sinus thrombosis with venous infarction. Anticoagulation was started. Six months later headache and visual impairment developed, and intracranial hypertension was diagnosed-secondary pseudotumor cerebri.
View Article and Find Full Text PDFIntroduction: Cerebral critical closing pressure (CrCP) comprises intracranial pressure (ICP) and arteriolar wall tension (WT). It is the arterial blood pressure (ABP) at which small vessels close and circulation stops. We hypothesized that the increase in WT secondary to a systemic hypertensive challenge would lead to an increase in CrCP and that the "effective" cerebral perfusion pressure (CPPeff; calculated as ABP - CrCP) would give more complete information than the "conventional" cerebral perfusion pressure (CPP; calculated as ABP - ICP).
View Article and Find Full Text PDFWe tested the influence of blood pressure variability on the reproducibility of dynamic cerebral autoregulation (DCA) estimates. Data were analyzed from the 2nd CARNet bootstrap initiative, where mean arterial blood pressure (MABP), cerebral blood flow velocity (CBFV) and end tidal CO2 were measured twice in 75 healthy subjects. DCA was analyzed by 14 different centers with a variety of different analysis methods.
View Article and Find Full Text PDFParameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy subjects, consisting of 5 min of spontaneous fluctuations in blood pressure and cerebral blood flow velocity signals, based on their usual methods of analysis.
View Article and Find Full Text PDFThe time constant of the cerebral arterial bed ("tau") estimates how fast the blood entering the brain fills the arterial vascular sector. Analogous to an electrical resistor-capacitor circuit, it is expressed as the product of arterial compliance (Ca) and cerebrovascular resistance (CVR). Hypocapnia increases the time constant in healthy volunteers and decreases arterial compliance in head trauma.
View Article and Find Full Text PDFObjective: Different methods to calculate dynamic cerebral autoregulation (dCA) parameters are available. However, most of these methods demonstrate poor reproducibility that limit their reliability for clinical use. Inter-centre differences in study protocols, modelling approaches and default parameter settings have all led to a lack of standardisation and comparability between studies.
View Article and Find Full Text PDFTransfer function analysis (TFA) is a frequently used method to assess dynamic cerebral autoregulation (CA) using spontaneous oscillations in blood pressure (BP) and cerebral blood flow velocity (CBFV). However, controversies and variations exist in how research groups utilise TFA, causing high variability in interpretation. The objective of this study was to evaluate between-centre variability in TFA outcome metrics.
View Article and Find Full Text PDF