This paper considers the problem of designing a shifting state-feedback controller via quadratic parameter-dependent Lyapunov functions (QPDLFs) for systems subject to symmetric time-varying saturations. By means of the linear parameter varying (LPV) framework and the use of the shifting paradigm and the ellipsoidal invariant theory, it is shown that the solution to this problem can be expressed with linear matrix inequalities (LMIs) which can efficiently be solved via available solvers. Specifically, three hyper-ellipsoidal regions are defined in the state-space domain for ensuring that the control action remains in the linearity region of the actuators where saturation does not occur.
View Article and Find Full Text PDFPurpose: To develop and test the sensitivity of an ultrasound-based sensor to assess the viewing distance of visual display terminals operators in real-time conditions.
Methods: A modified ultrasound sensor was attached to a computer display to assess viewing distance in real time. Sensor functionality was tested on a sample of 20 healthy participants while they conducted four 10-minute randomly presented typical computer tasks (a match-three puzzle game, a video documentary, a task requiring participants to complete a series of sentences, and a predefined internet search).
The health of the ocular surface requires blinks of the eye to be frequent in order to provide moisture and to renew the tear film. However, blinking frequency has been shown to decrease in certain conditions such as when subjects are conducting tasks with high cognitive and visual demands. These conditions are becoming more common as people work or spend their leisure time in front of video display terminals.
View Article and Find Full Text PDF