Unlabelled: Understanding subfield crop yields and temporal stability is critical to better manage crops. Several algorithms have proposed to study within-field temporal variability but they were mostly limited to few fields. In this study, a large dataset composed of 5520 yield maps from 768 fields provided by farmers was used to investigate the influence of subfield yield distribution skewness on temporal variability.
View Article and Find Full Text PDFSmallholder farmers in sub-Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low-input systems is currently lacking.
View Article and Find Full Text PDFNot all areas of a farmer's field are equal; some always produce more relative to the rest of the field, others always less, while still other areas fluctuate in their production capacity from one year to the next, depending on the interaction between climate, soil, topography and management. Understanding why the yield in certain portions of a field has a high variability over time-we call these areas unstable-is of paramount importance both from an economic and an environmental point of view, as it is through the better management of these areas that we can improve yields or reduce input costs and environmental impact. In this research, we analyzed data from 338 fields cultivated with maize, soybean, wheat and cotton in the US Midwest to understand how topographic attributes and rain affect yield stability over time.
View Article and Find Full Text PDFPyrogenic organic matter (PyOM) decomposes on centennial timescale in soils, but the processes regulating its decay are poorly understood. We conducted one of the first studies of PyOM and wood decomposition in a temperate forest using isotopically labeled organic substrate, and quantified microbial incorporation and physico-chemical transformations of PyOM in situ. Stable-isotope (¹³C and ¹⁵N) enriched PyOM and its precursor wood were added to the soil at 2 cm depth at ambient (N0) and increased (N+) levels of nitrogen fertilization.
View Article and Find Full Text PDF