Publications by authors named "Bernardo Luis Sabatini"

The neural substrates and pathophysiological mechanisms underlying the onset of cognitive and motor deficits in autism spectrum disorders (ASDs) remain unclear. Mutations in ASD-associated SHANK3 in mice (Shank3B) result in the accelerated maturation of corticostriatal circuits during the second and third postnatal weeks. Here, we show that during this period, there is extensive remodeling of the striatal synaptic proteome and a developmental switch in glutamatergic synaptic plasticity induced by cortical hyperactivity in striatal spiny projection neurons (SPNs).

View Article and Find Full Text PDF

The striatum, the entry nucleus of the basal ganglia, lacks laminar or columnar organization of its principal cells; nevertheless, functional data suggest that it is spatially organized. Here we examine whether the connectivity and synaptic organization of striatal GABAergic interneurons contributes to such spatial organization. Focusing on the two main classes of striatal GABAergic interneurons (fast-spiking interneurons [FSIs] and low-threshold-spiking interneurons [LTSIs]), we apply a combination of optogenetics and viral tracing approaches to dissect striatal microcircuits in mice.

View Article and Find Full Text PDF

Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord.

View Article and Find Full Text PDF

The globus pallidus externus (GP) is a nucleus of the basal ganglia (BG), containing GABAergic projection neurons that arborize widely throughout the BG, thalamus and cortex. Ongoing work seeks to map axonal projection patterns from GP cell types, as defined by their electrophysiological and molecular properties. Here we use transgenic mice and recombinant viruses to characterize parvalbumin expressing (PV+) GP neurons within the BG circuit.

View Article and Find Full Text PDF

Opioid neuropeptides and their receptors are evolutionarily conserved neuromodulatory systems that profoundly influence behavior. In dorsal striatum, which expresses the endogenous opioid enkephalin, patches (or striosomes) are limbic-associated subcompartments enriched in mu opioid receptors. The functional implications of opioid signaling in dorsal striatum and the circuit elements in patches regulated by enkephalin are unclear.

View Article and Find Full Text PDF