Publications by authors named "Bernardo Casabone"

We report on the high-efficiency storage and retrieval of weak coherent optical pulses and photonic qubits in a cavity-enhanced solid-state quantum memory. By using an atomic frequency comb (AFC) memory in a Pr:YSiO  crystal embedded in an impedance-matched cavity, we stored weak coherent pulses at the single photon level with up to 62% efficiency for a pre-determined storage time of 2 µs. We also confirmed that the impedance-matched cavity enhances the efficiency for longer storage times up to 70 µs.

View Article and Find Full Text PDF

The interaction of single quantum emitters with an optical cavity enables the realization of efficient spin-photon interfaces, an essential resource for quantum networks. The dynamical control of the spontaneous emission rate of quantum emitters in cavities has important implications in quantum technologies, e.g.

View Article and Find Full Text PDF

The generation and distribution of entanglement are key resources in quantum repeater schemes. Temporally multiplexed systems offer time-bin encoding of quantum information which provides robustness against decoherence in fibers, crucial in long distance communication. Here, we demonstrate the direct generation of entanglement in time between a photon and a collective spin excitation in a rare earth ion doped ensemble.

View Article and Find Full Text PDF

The Boltzmann echo (BE) is a measure of irreversibility and sensitivity to perturbations for non-isolated systems. Recently, different regimes of this quantity were described for chaotic systems. There is a perturbative regime where the BE decays with a rate given by the sum of a term depending on the accuracy with which the system is time reversed and a term depending on the coupling between the system and the environment.

View Article and Find Full Text PDF