Publications by authors named "Bernardo Abecasis"

Sorafenib is a multikinase inhibitor indicated for first-line treatment of unresectable hepatocellular carcinoma. Despite its widespread use in the clinic, the existing knowledge of sorafenib mode-of-action remains incomplete. To build upon the current understanding, we used the Cellular Thermal Shift Assay (CETSA) coupled to Mass Spectrometry (CETSA-MS) to monitor compound binding to its target proteins in the cellular context on a proteome-wide scale.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSC) possess significant therapeutic potential due to their high self-renewal capability and potential to differentiate into specialized cells such as cardiomyocytes. However, generated hiPSC-derived cardiomyocytes (hiPSC-CM) are still immature, with phenotypic and functional features resembling the fetal rather than their adult counterparts, which limits their application in cell-based therapies, cardiac disease modeling, and drug cardiotoxicity screening. Recent discoveries have demonstrated the potential of the extracellular matrix (ECM) as a critical regulator in development, homeostasis, and injury of the cardiac microenvironment.

View Article and Find Full Text PDF

Hepatocyte-like cells derived from human-induced pluripotent stem cells (hiPSC-HLC) are expected to have important applications in drug screening and regenerative medicine. However, hiPSC-HLC are difficult to produce on a large-scale to obtain relevant numbers for such applications. The aim of this study was to implement a novel integrated strategy for scalable production of hiPSC-HLC and demonstrate the applicability of dielectric spectroscopy to monitor hiPSC expansion/differentiation processes.

View Article and Find Full Text PDF

The combination of cardiomyocytes (CM) and non-myocyte cardiac populations, such as endothelial cells (EC), and mesenchymal cells (MC), has been shown to be critical for recapitulation of the human heart tissue for cell-based modeling. However, most of the current engineered cardiac microtissues still rely on either (i) murine/human limited primary cell sources, (ii) animal-derived and undefined hydrogels/matrices with batch-to-batch variability, or (iii) culture systems with low compliance with pharmacological high-throughput screenings. In this work, we explored a culture platform based on alginate microencapsulation and suspension culture systems to develop three-dimensional (3D) human cardiac microtissues, which entails the co-culture of human induced pluripotent stem cell (hiPSC) cardiac derivatives including aggregates of hiPSC-CM and single cells of hiPSC-derived EC and MC (hiPSC-EC+MC).

View Article and Find Full Text PDF

In vitro cell-based models that better mimic the human heart tissue are of utmost importance for drug development and cardiotoxicity testing but also as tools to understand mechanisms related with heart disease at cellular and molecular level. Besides, the implementation of analytical tools that allow the depiction and comprehensive understanding of the molecular mechanisms of the crosstalk between the different cell types is also relevant. In this work, we implemented a human cardiac tissue-like in vitro model, derived from human-induced pluripotent stem cell (hiPSC), and evaluated the relevance of the cell-cell communication between the two of the most representative cell populations of the human heart: cardiomyocytes (hiPSC-CM) and endothelial cells (hiPSC-EC).

View Article and Find Full Text PDF

Cardiomyocytes (CMs), derived from pluripotent stem cells (PSCs), have the potential to be used in cardiac repair. Addition of physical cues, such as electrical and mechanical stimulations, have proven to significantly effect morphology, density, cardiogenesis, maturity and functionality of differentiated CMs. This work combines rigorous fluid dynamics investigation and flow frequency analysis with iPSC differentiation experiments to identify and quantify the flow characteristics leading to a significant increase of differentiation yield.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSC) are attractive tools for drug screening and disease modeling and promising candidates for cell therapy applications. However, to achieve the high numbers of cells required for these purposes, scalable and clinical-grade technologies must be established. In this study, we use environmentally controlled stirred-tank bioreactors operating in perfusion as a powerful tool for bioprocess intensification of hiPSC production.

View Article and Find Full Text PDF