Publications by authors named "Bernardes G"

Nanoscale aggregates play a key role in the pathogenesis of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. However, quantifying these aggregates in complex biological samples, such as biofluids and postmortem brain tissue, has been challenging due to their low concentration and small size, necessitating the development of methods with high sensitivity and specificity. Here, we have developed ultrasensitive assays utilizing the Quanterix Simoa platform to detect α-synuclein, β-amyloid and tau aggregates, including those with common posttranslational modifications such as truncation of α-synuclein and AT8 phosphorylation of tau aggregates.

View Article and Find Full Text PDF

The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are a growing class of chemotherapeutic agents that have yielded striking clinical successes. However, the efficacy of ADCs often suffers from issues associated with tumor heterogeneity and resistance. To overcome these problems, a new generation of ADCs comprising a single monoclonal antibody with multiple different payloads attached, termed multi-payload ADCs, have been developed.

View Article and Find Full Text PDF

Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by endogenous ligands. Therapeutic approaches such as lysosome-targeting chimaeras (LYTACs) and cytokine receptor-targeting chimeras (KineTACs) have used this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. Although powerful, these approaches can be limited by competition with native ligands and requirements for chemical modification that limit genetic encodability and can complicate manufacturing, and, more generally, there may be no native ligands that stimulate endocytosis through a given receptor.

View Article and Find Full Text PDF

Glycopeptides derived from the glycoprotein mucin-1 (MUC1) have shown potential as tumor-associated antigens for cancer vaccine development. However, their low immunogenicity and non-selective conjugation to carriers present significant challenges for the clinical efficacy of MUC1-based vaccines. Here, we introduce a novel vaccine candidate based on a structure-guided design of an artificial antigen derived from MUC1 glycopeptide.

View Article and Find Full Text PDF

Cyclization provides a general strategy for improving the proteolytic stability, cell membrane permeability and target binding affinity of peptides. Insertion of a stable, non-reducible linker into a disulphide bond is a commonly used approach for cyclizing phage-displayed peptides. However, among the vast collection of cysteine reactive linkers available, few provide the selectivity required to target specific cysteine residues within the peptide in the phage display system, whilst sparing those on the phage capsid.

View Article and Find Full Text PDF

RNA is a central molecule in life, involved in a plethora of biological processes and playing a key role in many diseases. Targeting RNA emerges as a significant endeavor in drug discovery, diverging from conventional protein-centric approaches to tackle various pathologies. Whilst identifying small molecules that bind to specific RNA regions is the first step, the abundance of non-functional RNA segments renders many interactions biologically inert.

View Article and Find Full Text PDF

Selective cleavage of amide bonds holds prominent significance by facilitating precise manipulation of biomolecules, with implications spanning from basic research to therapeutic interventions. However, achieving selective cleavage of amide bonds via mild synthetic chemistry routes poses a critical challenge. Here, we report a novel amide bond-cleavage reaction triggered by Na[AuCl] in mild aqueous conditions, where a crucial cyclization step leads to the formation of a 5-membered ring intermediate that rapidly hydrolyses to release the free amine in high yields.

View Article and Find Full Text PDF

Chemical post-translational protein-protein conjugation is an important technique with growing applications in biotechnology and pharmaceutical research. Maleimides represent one of the most widely employed bioconjugation reagents. However, challenges associated with the instability of first- and second-generation maleimide technologies are yet to be fully addressed.

View Article and Find Full Text PDF

Ischemic stroke occurs due a blockage in the blood flow to the brain, leading to damage to the nervous system. The prevalent morbidities resulting from stroke include post-stroke infection, as sepsis. Additionally, oxidative stress is recognized for inducing functional deficits in peripheral organs during sepsis.

View Article and Find Full Text PDF

Many systemic cancer chemotherapies comprise a combination of drugs, yet all clinically used antibody-drug conjugates (ADCs) contain a single-drug payload. These combination regimens improve treatment outcomes by producing synergistic anticancer effects and slowing the development of drug-resistant cell populations. In an attempt to replicate these regimens and improve the efficacy of targeted therapy, the field of ADCs has moved towards developing techniques that allow for multiple unique payloads to be attached to a single antibody molecule with high homogeneity.

View Article and Find Full Text PDF

Intelectins belong to a family of lectins with specific and transitory carbohydrate interaction capabilities. These interactions are related to the activity of agglutinating pathogens, as intelectins play a significant role in immunity. Despite the prominent immune defense function of intelectins, limited information about its structural characteristics and carbohydrate interaction properties is available.

View Article and Find Full Text PDF

Targeted drug delivery approaches that selectively and preferentially deliver therapeutic agents to specific tissues are of great interest for safer and more effective pharmaceutical treatments. We investigated whether cathepsin B cleavage of a valine-citrulline [VC()]-containing linker is required for the release of monomethyl auristatin E (MMAE) from albumin-drug conjugates. In this study, we used an engineered version of human serum albumin, Veltis High Binder II (HBII), which has enhanced binding to the neonatal Fc (fragment crystallizable) receptor (FcRn) to improve drug release upon binding and FcRn-mediated recycling.

View Article and Find Full Text PDF

Emotions encompass physiological systems that can be assessed through biosignals like electromyography and electrocardiography. Prior investigations in emotion recognition have primarily focused on general population samples, overlooking the specific context of theatre actors who possess exceptional abilities in conveying emotions to an audience, namely acting emotions. We conducted a study involving 11 professional actors to collect physiological data for acting emotions to investigate the correlation between biosignals and emotion expression.

View Article and Find Full Text PDF

Mucin-1 (MUC1) glycopeptides are exceptional candidates for potential cancer vaccines. However, their autoantigenic nature often results in a weak immune response. To overcome this drawback, we carefully engineered synthetic antigens with precise chemical modifications.

View Article and Find Full Text PDF

PROTAC linker design remains mostly an empirical task. We employed the PRosettaC computational software in the design of sulfonyl-fluoride-based PROTACs targeting acyl protein thioesterase 1 (APT1). The software efficiently generated ternary complex models from empirically-designed PROTACs and suggested alkyl linkers to be the preferred type of linker to target APT1.

View Article and Find Full Text PDF

Machine learning (ML) models have made inroads into chemical sciences, with optimization of chemical reactions and prediction of biologically active molecules being prime examples thereof. These models excel where physical experiments are expensive or time-consuming, for example, due to large scales or the need for materials that are difficult to obtain. Studies of natural products suffer from these issues─this class of small molecules is known for its wealth of structural diversity and wide-ranging biological activities, but their investigation is hindered by poor synthetic accessibility and lack of scalability.

View Article and Find Full Text PDF

Misfolded protein oligomers are of central importance in both the diagnosis and treatment of Alzheimer's and Parkinson's diseases. However, accurate high-throughput methods to detect and quantify oligomer populations are still needed. We present here a single-molecule approach for the detection and quantification of oligomeric species.

View Article and Find Full Text PDF

The influences of ethylene-based elastomer (EE) and the compatibilizer agent ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA) on the thermal degradation of PLA/EE blends were evaluated by the thermal degradation kinetics and thermodynamic parameters using thermogravimetry. The presence of EE and EBAGMA synergistically improved the PLA thermal stability. The temperature of 10% of mass loss (T) of PLA was around 365 °C, while in the compatibilized PLA/EE blend, this property increased to 370 °C.

View Article and Find Full Text PDF

Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by interaction with endogenous ligands. Therapeutic approaches such as LYTAC and KineTAC, have taken advantage of this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. While powerful, these approaches can be limited by possible competition with the endogenous ligand(s), the requirement in some cases for chemical modification that limits genetic encodability and can complicate manufacturing, and more generally, there may not be natural ligands which stimulate endocytosis through a given receptor.

View Article and Find Full Text PDF

Multicomponent reactions are of utmost importance at generating a unique, wide, and complex chemical space. Herein we describe a novel multicomponent approach based on the combination of the isonitrile-tetrazine (4+1) cycloaddition and the Ugi four-component reaction to generate pyrazole amide derivatives. The scope of the reaction as well as mechanistic insights governing the 4H-pyrazol-4-imine tautomerization are provided.

View Article and Find Full Text PDF

The emergence of novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need to investigate alternative approaches to prevent infection and treat patients with coronavirus disease 2019. Here, we report the preclinical efficacy of NL-CVX1, a de novo decoy that blocks virus entry into cells by binding with nanomolar affinity and high specificity to the receptor-binding domain of the SARS-CoV-2 spike protein. Using a transgenic mouse model of SARS-CoV-2 infection, we showed that a single prophylactic intranasal dose of NL-CVX1 conferred complete protection from severe disease following SARS-CoV-2 infection.

View Article and Find Full Text PDF

This paper presents a clinical case study investigating the pattern of a saxophonist's embouchure as a possible origin of orofacial pain. The rehabilitation addressed the dental occlusion and a fracture in a metal ceramic bridge. To evaluate the undesirable loads on the upper teeth, two piezoresistive sensors were placed between the central incisors and the mouthpiece during the embouchure.

View Article and Find Full Text PDF

Nature has evolved intricate machinery to target and degrade RNA, and some of these molecular mechanisms can be adapted for therapeutic use. Small interfering RNAs and RNase H-inducing oligonucleotides have yielded therapeutic agents against diseases that cannot be tackled using protein-centered approaches. Because these therapeutic agents are nucleic acid-based, they have several inherent drawbacks which include poor cellular uptake and stability.

View Article and Find Full Text PDF

The demand for new biomass-derived fine and commodity chemicals propels the discovery of new methodologies and synthons. Whereas furfural and 5-hydroxymethylfurfural are cornerstones of sustainable chemistry, 3-acetamido-5-acetyl furan (3A5AF), an N-rich furan obtained from chitin biomass, remains unexplored, due to the poor reactivity of the acetyl group relative to previous furanic aldehydes. Here we developed a reactive 3-acetamido-5-furfuryl aldehyde (3A5F) and demonstrated the utility of this synthon as a source of bio-derived nitrogen-rich heteroaromatics, carbocycles, and as a bioconjugation reagent.

View Article and Find Full Text PDF