Publications by authors named "Bernard Schneider"

In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including the dysfunction of the neuroprotective protein parkin.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) are at the core of all key biological processes. However, the complexity of the structural features that determine PPIs makes their design challenging. We present BindCraft, an open-source and automated pipeline for protein binder design with experimental success rates of 10-100%.

View Article and Find Full Text PDF

Background: The liver is a key metabolic organ, acting as a hub to metabolically connect various tissues. Spinal muscular atrophy (SMA) is a neuromuscular disorder whereby patients have an increased susceptibility to developing dyslipidaemia and liver steatosis. It remains unknown whether fatty liver is due to an intrinsic or extrinsic impact of survival motor neuron (SMN) protein depletion.

View Article and Find Full Text PDF

Astrocytes play a crucial role in the onset and progression of amyotrophic lateral sclerosis (ALS), a fatal disorder marked by the degeneration of motor neurons (MNs) in the central nervous system. Although astrocytes in ALS are known to be toxic to MNs, the pathological changes leading to their neurotoxic phenotype remain poorly understood. In this study, we generated human astrocytes from induced pluripotent stem cells (iPSCs) carrying the ALS-associated A4V mutation in superoxide dismutase 1 (SOD1) to examine early cellular pathways and network changes.

View Article and Find Full Text PDF
Article Synopsis
  • Methamphetamine misuse is rapidly increasing in the US, and there is currently no FDA-approved treatment for meth use disorder (MUD), leading to neurological issues from the drug's toxicity.
  • This study explores the role of the protein parkin and its relationship with CDCrel-1 and VMAT2 in the neurotoxic effects of methamphetamine in male rats, demonstrating that binge METH alters CDCrel-1 levels and its interaction with VMAT2.
  • Findings indicate significant individual differences in responses to meth's neurotoxicity, suggesting that understanding these genetic and molecular variations can help improve treatments for humans affected by MUD and associated neurological damage.
View Article and Find Full Text PDF

Here, we describe methods for the production of adeno-associated viral (AAV) vectors by transient transfection of HEK293 cells grown in serum-free medium using orbital shaken bioreactors and the subsequent purification of vector particles. The protocol for expression of AAV components is based on polyethyleneimine (PEI)-mediated transfection of a three-plasmid system and is specified for production in milliliter-to-liter scales. After PEI and plasmid DNA (pDNA) complex formation, the diluted cell culture is transfected without a prior concentration step or medium exchange.

View Article and Find Full Text PDF

Here, we introduce the Tabulae Paralytica-a compilation of four atlases of spinal cord injury (SCI) comprising a single-nucleus transcriptome atlas of half a million cells, a multiome atlas pairing transcriptomic and epigenomic measurements within the same nuclei, and two spatial transcriptomic atlases of the injured spinal cord spanning four spatial and temporal dimensions. We integrated these atlases into a common framework to dissect the molecular logic that governs the responses to injury within the spinal cord. The Tabulae Paralytica uncovered new biological principles that dictate the consequences of SCI, including conserved and divergent neuronal responses to injury; the priming of specific neuronal subpopulations to upregulate circuit-reorganizing programs after injury; an inverse relationship between neuronal stress responses and the activation of circuit reorganization programs; the necessity of re-establishing a tripartite neuroprotective barrier between immune-privileged and extra-neural environments after SCI and a failure to form this barrier in old mice.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by motor neuron loss and skeletal muscle atrophy. SMA is caused by the loss of the SMN1 gene and low SMN protein levels. Current SMA therapies work by increasing SMN protein in the body.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are the most common motoneuron diseases affecting adults and infants, respectively. ALS and SMA are both characterized by the selective degeneration of motoneurons. Although different in their genetic etiology, growing evidence indicates that they share molecular and cellular pathogenic signatures that constitute potential common therapeutic targets.

View Article and Find Full Text PDF

In Parkinson's disease, pathogenic factors such as the intraneuronal accumulation of the protein α-synuclein affect key metabolic processes. New approaches are required to understand how metabolic dysregulations cause degeneration of vulnerable subtypes of neurons in the brain. Here, we apply correlative electron microscopy and NanoSIMS isotopic imaging to map and quantify C enrichments in dopaminergic neurons at the subcellular level after pulse-chase administration of C-labeled glucose.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to fix spinal cord injuries so people can walk again, but it's been tricky to get it right.
  • They studied specific nerve cells in mice to see which ones help in recovery after an injury.
  • By guiding the broken nerve pathways back to where they should go, they found that mice could walk better, so it's important to connect the right nerves for healing.
View Article and Find Full Text PDF

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established.

View Article and Find Full Text PDF

The nucleus accumbens (NAc) is a brain hub regulating motivated behaviors, including social competitiveness. Mitochondrial function in the NAc links anxiety with social competitiveness, and the mitochondrial fusion protein mitofusin 2 (Mfn2) in NAc neurons regulates anxiety-related behaviors. However, it remains unexplored whether accumbal Mfn2 levels also affect social behavior and whether Mfn2 actions in the emotional and social domain are driven by distinct cell types.

View Article and Find Full Text PDF

The cellular prion protein PrP mediates the neurotoxicity of prions and other protein aggregates through poorly understood mechanisms. Antibody-derived ligands against the globular domain of PrP (GDL) can also initiate neurotoxicity by inducing an intramolecular R -H hydrogen bond ("H-latch") between the α2-α3 and β2-α2 loops of PrP . Importantly, GDL that suppresses the H-latch prolong the life of prion-infected mice, suggesting that GDL toxicity and prion infections exploit convergent pathways.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the SMN1 gene and low SMN protein levels. Although lower motor neurons are a primary target, there is evidence that peripheral organ defects contribute to SMA. Current SMA gene therapy and clinical trials use a single intravenous bolus of the blood-brain-barrier penetrant scAAV9-cba-SMN by either systemic or central nervous system (CNS) delivery, resulting in impressive amelioration of the clinical phenotype but not a complete cure.

View Article and Find Full Text PDF

Methamphetamine (METH) is a highly abused psychostimulant that is neurotoxic to dopaminergic (DAergic) nerve terminals in the striatum and increases the risk of developing Parkinson's disease (PD). In vivo, METH-mediated DA release, followed by DA-mediated oxidative stress and mitochondrial dysfunction in pre- and postsynaptic neurons, mediates METH neurotoxicity. METH-triggered oxidative stress damages parkin, a neuroprotective protein involved in PD etiology via its involvement in the maintenance of mitochondria.

View Article and Find Full Text PDF

In amyotrophic lateral sclerosis (ALS) caused by SOD1 gene mutations, both cell-autonomous and noncell-autonomous mechanisms lead to the selective degeneration of motoneurons (MN). Here, we evaluate the therapeutic potential of gene therapy targeting mutated SOD1 in mature astrocytes using mice expressing the mutated SOD1 protein. An AAV-gfaABC D vector encoding an artificial microRNA is used to deliver RNA interference against mutated SOD1 selectively in astrocytes.

View Article and Find Full Text PDF

Skeletal muscle displays remarkable plasticity upon exercise and is also one of the organs most affected by aging. Despite robust evidence that aging is associated with loss of fast-twitch (type II) muscle fibers, the underlying mechanisms remain to be elucidated. Here, we identified an exercise-induced long noncoding RNA, , whose exercise responsiveness was conserved in human and rodents.

View Article and Find Full Text PDF

Bile acids (BAs) are signalling molecules that mediate various cellular responses in both physiological and pathological processes. Several studies report that BAs can be detected in the brain, yet their physiological role in the central nervous system is still largely unknown. Here we show that postprandial BAs can reach the brain and activate a negative-feedback loop controlling satiety in response to physiological feeding via TGR5, a G-protein-coupled receptor activated by multiple conjugated and unconjugated BAs and an established regulator of peripheral metabolism.

View Article and Find Full Text PDF

There is no FDA-approved medication for methamphetamine (METH) use disorder. New therapeutic approaches are needed, especially for people who use METH heavily and are at high risk for overdose. This study used genetically engineered rats to evaluate PARKIN as a potential target for METH use disorder.

View Article and Find Full Text PDF
Article Synopsis
  • ALS is a neurodegenerative disease causing muscle weakness and paralysis, typically leading to death within 3-5 years; its cause remains unknown.
  • Neuroinflammation is a promising area of research, with indicators like NF-κB being linked to ALS in both patients and animal models.
  • The review explores the genetic and environmental roles of NF-κB in ALS, its effects on central nervous system cells, and its potential contribution to motor neuron degeneration.
View Article and Find Full Text PDF

α-Synuclein aggregation at the synapse is an early event in Parkinson's disease and is associated with impaired striatal synaptic function and dopaminergic neuronal death. The cysteine string protein (CSPα) and α-synuclein have partially overlapping roles in maintaining synaptic function and mutations in each cause neurodegenerative diseases. CSPα is a member of the DNAJ/HSP40 family of co-chaperones and like α-synuclein, chaperones the SNARE complex assembly and controls neurotransmitter release.

View Article and Find Full Text PDF

Dendritic cells (DCs) are professional antigen-presenting cells involved in the initiation of immune responses. We generated a tolerogenic DC (tolDC) line that constitutively secretes interleukin-10 (IL10-DCs), expressed lower levels of co-stimulatory and MHCII molecules upon stimulation, and induced antigen-specific proliferation of T cells. Vaccination with IL10-DCs combined with another tolDC line that secretes IL-35, reduced antigen-specific local inflammation in a delayed-type hypersensitivity assay independently on regulatory T cell differentiation.

View Article and Find Full Text PDF

Background: Emerging evidence points to a central role of mitochondria in psychiatric disorders. However, little is known about the molecular players that regulate mitochondria in neural circuits regulating anxiety and depression and about how they impact neuronal structure and function. Here, we investigated the role of molecules involved in mitochondrial dynamics in medium spiny neurons (MSNs) from the nucleus accumbens (NAc), a hub of the brain's motivation system.

View Article and Find Full Text PDF

Background & Aims: Nonalcoholic fatty liver disease (NAFLD) is considered a health epidemic with potential devastating effects on the patients and the healthcare systems. Current preclinical models of NAFLD are invariably imperfect and generally take a long time to develop. A mouse model of survival motor neuron (SMN) depletion (Smn mice) was recently shown to develop significant hepatic steatosis in less than 2 weeks from birth.

View Article and Find Full Text PDF