Publications by authors named "Bernard R Brooks"

Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The MnOCa cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O and releasing protons to the lumen and electrons to drive PSII reactions.

View Article and Find Full Text PDF

Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations of symmetric lipid bilayers are now well established, while those of asymmetric ones are considerably less developed. This disjunction arises in part because the surface tensions of leaflets in asymmetric bilayers can differ (unlike those of symmetric ones), and there is no simple way to determine them without assumptions. This chapter describes the use of P2 periodic boundary conditions (PBC), which allow lipids to switch leaflets, to generate asymmetric bilayers under the assumption of equal chemical potentials of lipids in opposing leaflets.

View Article and Find Full Text PDF

DNA primase is an iron sulfur enzyme in DNA replication responsible for synthesizing short RNA primers that serve as starting points for DNA synthesis. The role of the [4Fe-4S] cluster is not well determined. Here, we calculate the redox potential of the [4Fe-4S] with and without DNA/RNA using continuum electrostatics.

View Article and Find Full Text PDF

The oxygen-evolving complex (OEC) of Photosystem II catalyzes the water-splitting reaction using solar energy. Thus, understanding the reaction mechanism will inspire the design of biomimetic artificial catalysts that convert solar energy to chemical energy. Conceptual Density Functional Theory (CDFT) focuses on understanding the reactivity of molecules and the atomic contribution to the overall nucleophilicity and electrophilicity of the molecule using quantum descriptors.

View Article and Find Full Text PDF

The grid inhomogeneous solvation theory (GIST) method requires the often time-consuming calculation of water-water and water-solute energy on a grid. Previous efforts to speed up this calculation include using OpenMP, GPUs, and particle mesh Ewald. This article details how the speed of this calculation can be increased by parallelizing it with MPI, where trajectory frames are divided among multiple processors.

View Article and Find Full Text PDF

Conformational dynamics in proteins can give rise to aggregation prone states during folding, and these kinetically stable states could form oligomers and aggregates. In this study, we investigate the intermediate states and near-folded states of β2-microglobulin and their physico-chemical properties using molecular dynamics and Markov state modeling. Analysis of hundreds of microseconds simulation show the importance of the edge strands in the misfolded states that give rise to a high exposure of hydrophobic residues in the core of the protein that could initiate oligomerization and aggregate formation.

View Article and Find Full Text PDF

In bacterial voltage-gated sodium channels, the passage of ions through the pore is controlled by a selectivity filter (SF) composed of four glutamate residues. The mechanism of selectivity has been the subject of intense research, with suggested mechanisms based on steric effects, and ion-triggered conformational change. Here, we propose an alternative mechanism based on ion-triggered shifts in p values of SF glutamates.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations are now able to routinely reach timescales of microseconds and beyond. This has led to a corresponding increase in the amount of MD trajectory data that needs to be stored, particularly when those trajectories contain explicit solvent molecules. As such, it is desirable to be able to compress trajectory data while still retaining as much of the original information as possible.

View Article and Find Full Text PDF

Accurately predicting free energy differences is essential in realizing the full potential of rational drug design. Unfortunately, high levels of accuracy often require computationally expensive QM/MM Hamiltonians. Fortuitously, the cost of employing QM/MM approaches in rigorous free energy simulation can be reduced through the use of the so-called "indirect" approach to QM/MM free energies, in which the need for QM/MM simulations is avoided via a QM/MM "correction" at the classical endpoints of interest.

View Article and Find Full Text PDF

Finding a low dimensional representation of data from long-timescale trajectories of biomolecular processes, such as protein folding or ligand-receptor binding, is of fundamental importance, and kinetic models, such as Markov modeling, have proven useful in describing the kinetics of these systems. Recently, an unsupervised machine learning technique called VAMPNet was introduced to learn the low dimensional representation and the linear dynamical model in an end-to-end manner. VAMPNet is based on the variational approach for Markov processes and relies on neural networks to learn the coarse-grained dynamics.

View Article and Find Full Text PDF

Protonation states of ionizable protein residues modulate many essential biological processes. For correct modeling and understanding of these processes, it is crucial to accurately determine their p values. Here, we present four tree-based machine learning models for protein p prediction.

View Article and Find Full Text PDF

Molecular modeling and simulation are invaluable tools for nanoscience that predict mechanical, physicochemical, and thermodynamic properties of nanomaterials and provide molecular-level insight into underlying mechanisms. However, building nanomaterial-containing systems remains challenging due to the lack of reliable and integrated cyberinfrastructures. Here we present Nanomaterial Modeler in CHARMM-GUI, a web-based cyberinfrastructure that provides an automated process to generate various nanomaterial models, associated topologies, and configuration files to perform state-of-the-art molecular dynamics simulations using most simulation packages.

View Article and Find Full Text PDF

Conformational sampling of biomolecules using molecular dynamics simulations often produces a large amount of high dimensional data that makes it difficult to interpret using conventional analysis techniques. Dimensionality reduction methods are thus required to extract useful and relevant information. Here, we devise a machine learning method, Gaussian mixture variational autoencoder (GMVAE), that can simultaneously perform dimensionality reduction and clustering of biomolecular conformations in an unsupervised way.

View Article and Find Full Text PDF

This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods.

View Article and Find Full Text PDF

Through molecular dynamics (MD) and free energy simulations in electric fields, we examine the factors influencing conductance of bacterial voltage-gated sodium channel NaMs. The channel utilizes four glutamic acid residues in the selectivity filter (SF). Previously, we have shown, through constant pH and free energy calculations of pKa values, that fully deprotonated, singly protonated, and doubly protonated states are all feasible at physiological pH, depending on how many ions are bound in the SF.

View Article and Find Full Text PDF

The self-assembling propensity of amyloid peptides such as diphenylalanine (FF) allows them to form ordered, nanoscale structures, with biocompatible properties important for biomedical applications. Moreover, piezoelectric properties allow FF molecules and their aggregates (e.g.

View Article and Find Full Text PDF

The Eighth-Shell method for parallelization of molecular dynamics simulations has previously been shown to be the most optimal for efficiency at large process counts. However, in its current formulation only the P1 space group is supported for periodic boundary conditions (PBC) and thus reflection and/or rotational crystal symmetries are not supported. In this work, we outline the development and implementation of the Extended Eighth-Shell (EES) method that allows rotational symmetry by using an extended import region compared to the ES method.

View Article and Find Full Text PDF

In this study, we report binding free energy calculations of various drugs-of-abuse to Cucurbit-[8]-uril as part of the SAMPL8 blind challenge. Force-field parameters were obtained from force-matching with different quantum mechanical levels of theory. The Replica Exchange Umbrella Sampling (REUS) approach was used with a cylindrical restraint to enhance the sampling of host-guest binding.

View Article and Find Full Text PDF

The particle mesh Ewald (PME) method has become ubiquitous in the molecular simulation community due to its ability to deliver long range electrostatics accurately with ON⁡log(N) complexity. Despite this widespread use, spanning more than two decades, second derivatives (Hessians) have not been available. In this work, we describe the theory and implementation of PME Hessians, which have applications in normal mode analysis, characterization of stationary points, phonon dispersion curve calculation, crystal structure prediction, and efficient geometry optimization.

View Article and Find Full Text PDF

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 continues to rage with devastating consequences on human health and global economy. The spike glycoprotein on the surface of coronavirus mediates its entry into host cells and is the target of all current antibody design efforts to neutralize the virus. The glycan shield of the spike helps the virus to evade the human immune response by providing a thick sugar-coated barrier against any antibody.

View Article and Find Full Text PDF

The development of the CHARMM lipid force field (FF) can be traced back to the early 1990s with its current version denoted CHARMM36 (C36). The parametrization of C36 utilized high-level quantum mechanical data and free energy calculations of model compounds before parameters were manually adjusted to yield agreement with experimental properties of lipid bilayers. While such manual fine-tuning of FF parameters is based on intuition and trial-and-error, automated methods can identify beneficial modifications of the parameters via their sensitivities and thereby guide the optimization process.

View Article and Find Full Text PDF

Long-range Lennard-Jones (LJ) interactions have been incorporated into the CHARMM36 (C36) lipid force field (FF) using the LJ particle-mesh Ewald (LJ-PME) method in order to remove the inconsistency of bilayer and monolayer properties arising from the exclusion of long-range dispersion [Yu, Y.; Semi-automated Optimization of the CHARMM36 Lipid Force Field to Include Explicit Treatment of Long-Range Dispersion. 2021, 10.

View Article and Find Full Text PDF

Particle Mesh Ewald (PME) has become a standard method for treating long-range electrostatics in molecular simulations. Although the method has inferior asymptotic computational complexity to its linear scaling competitors, it remains enormously popular due to its high efficiency, which stems from the use of fast Fourier transforms (FFTs). This use of FFTs provides great challenges for scaling the method up to massively parallel systems, in large part because of the need to transfer large amounts of data.

View Article and Find Full Text PDF

A double exponential (DE) functional form for Lennard-Jones (LJ) interactions, proposed in our previous study, has many advantages over LJ potentials including a natural softcore characteristic for the convenience of the pathway-based free-energy calculations, fast convergence, and flexibility in use. In this work, we put the first step on the application of the DE functional form by identifying a DE potential, coined DE-TIP3P, for molecular simulations using the TIP3P water model. The developed DE-TIP3 potential was better than LJ potential in reproducing the experimental water properties.

View Article and Find Full Text PDF