Publications by authors named "Bernard Murray"

Article Synopsis
  • - Lenacapavir (LEN) is a long-acting injectable drug approved for treating HIV-1, notable for its dual atropisomeric form that maintains a stable ratio in the bloodstream despite rapid interconversion.
  • - The drug shows low systemic clearance in humans and animals, with a primary elimination route through fecal excretion rather than urine, while its concentration remains stable in plasma.
  • - The study reveals that LEN does not enter the brain due to its interaction with P-glycoprotein and emphasizes the significance of intestinal excretion (IE) for drugs that are metabolically stable and eliminated slowly.
View Article and Find Full Text PDF

Despite the increasing importance of aldehyde oxidase (AO) in the drug metabolism of clinical candidates, ontogeny data for AO are limited. The objective of our study was to characterize the age-dependent AO content and activity in the human liver cytosolic fraction (HLC) and human hepatocytes (HH). HLC ( = 121 donors) and HH ( = 50 donors) were analyzed for (1) AO protein content by quantitative proteomics and (2) enzyme activity using carbazeran as a probe substrate.

View Article and Find Full Text PDF

Protease inhibitors (PIs) remain an important component of antiretroviral therapy for the treatment of HIV-1 infection due to their high genetic barrier to resistance development. Nevertheless, the two most commonly prescribed HIV PIs, atazanavir and darunavir, still require co-administration with a pharmacokinetic boosting agent to maintain sufficient drug plasma levels which can lead to undesirable drug-drug interactions. Herein, we describe GS-9770, a novel investigational non-peptidomimetic HIV PI with unboosted once-daily oral dosing potential due to improvements in its metabolic stability and its pharmacokinetic properties in preclinical animal species.

View Article and Find Full Text PDF

Rifampicin (RIF) is a mixed-mode perpetrator that produces pleiotropic effects on liver cytochrome P450 enzymes and drug transporters. To assess the complex drug-drug interaction liabilities of RIF in vivo, a known probe substrate, midazolam (MDZ), along with multiple endogenous biomarkers were simultaneously monitored in beagle dogs before and after a 7-day treatment period by RIF at 20 mg/kg per day. Confirmed by the reduced MDZ plasma exposure and elevated 4-hydroxycholesterol (4-HC, biomarker of CYP3A activities) level, CYP3A was significantly induced after repeated RIF doses, and such induction persisted for 3 days after cessation of the RIF administration.

View Article and Find Full Text PDF

We investigated the effect of variability and instability in aldehyde oxidase (AO) content and activity on the scaling of in vitro metabolism data. AO content and activity in human liver cytosol (HLC) and five recombinant human AO preparations (rAO) were determined using targeted proteomics and carbazeran oxidation assay, respectively. AO content was highly variable as indicated by the relative expression factor (REF; i.

View Article and Find Full Text PDF

Bictegravir (BIC) is a potent small-molecule integrase strand-transfer inhibitor (INSTI) and a component of Biktarvy, a single-tablet combination regimen that is currently approved for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. The properties, pharmacokinetics (PK), and drug-drug interaction (DDI) profile of BIC were characterised and .BIC is a weakly acidic, ionisable, lipophilic, highly plasma protein-bound BCS class 2 molecule, which makes it difficult to predict human PK using standard methods.

View Article and Find Full Text PDF

Bictegravir (BIC) is a potent small-molecule integrase strand-transfer inhibitor (INSTI) and a component of Biktarvy®, a single-tablet combination regimen that is currently approved for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. The absorption, metabolism, distribution, and elimination (ADME) characteristics of BIC were determined through nonclinical and clinical studies (IND 121318).[C]BIC was rapidly absorbed orally in mice, rats, monkeys and human.

View Article and Find Full Text PDF

Acyl glucuronides (AGs) are common metabolites of carboxylic acid-containing compounds. In some circumstances, AGs are suspected to be involved in drug toxicity due to formation of acyl migration products that bind covalently to cellular components. The risk of this adverse effect has been found to be correlated with the chemical stability of the AG, and assays have been described that monitor acyl migration by liquid chromatography coupled with mass spectrometry (LC-MS).

View Article and Find Full Text PDF

The use of animal pharmacokinetic models as surrogates for humans relies on the assumption that the drug disposition mechanisms are similar between preclinical species and humans. However, significant cross-species differences exist in the tissue distribution and protein abundance of drug-metabolizing enzymes (DMEs) and transporters. We quantified non-cytochrome P450 (non-CYP) DMEs across commonly used preclinical species (cynomolgus and rhesus monkeys, beagle dog, Sprague Dawley and Wistar Han rats, and CD1 mouse) and compared these data with previously obtained human data.

View Article and Find Full Text PDF

Remdesivir (RDV; GS-5734, Veklury), the first FDA-approved antiviral to treat COVID-19, is a single-diastereomer monophosphoramidate prodrug of an adenosine analogue. RDV is taken up in the target cells and metabolized in multiple steps to form the active nucleoside triphosphate (TP) (GS-443902), which, in turn, acts as a potent and selective inhibitor of multiple viral RNA polymerases. In this report, we profiled the key enzymes involved in the RDV metabolic pathway with multiple parallel approaches: (i) bioinformatic analysis of nucleoside/nucleotide metabolic enzyme mRNA expression using public human tissue and lung single-cell bulk mRNA sequence (RNA-seq) data sets, (ii) protein and mRNA quantification of enzymes in human lung tissue and primary lung cells, (iii) biochemical studies on the catalytic rate of key enzymes, (iv) effects of specific enzyme inhibitors on the GS-443902 formation, and (v) the effects of these inhibitors on RDV antiviral activity against SARS-CoV-2 in cell culture.

View Article and Find Full Text PDF
Article Synopsis
  • B cells play a crucial role in systemic lupus erythematosus (SLE) and lupus nephritis (LN), with antinuclear antibodies present in nearly all SLE patients; targeting spleen tyrosine kinase (SYK) may help manage these conditions.
  • A study evaluated lanraplenib, a selective oral SYK inhibitor, on human B cells in vitro and NZB/W mice in vivo, measuring its impact on kidney health and immune response.
  • Results showed lanraplenib inhibited B cell activation, improved mouse survival, reduced proteinuria and kidney damage, and lowered inflammation markers, indicating its potential as a therapeutic option for lupus-related diseases.
View Article and Find Full Text PDF

Objective: Janus kinase inhibitors (JAKinibs) are efficacious in rheumatoid arthritis (RA) with variable reported rates of adverse events, potentially related to differential JAK family member selectivity. Filgotinib was compared with baricitinib, tofacitinib and upadacitinib to elucidate the pharmacological basis underlying its clinical efficacy and safety.

Methods: In vitro JAKinib inhibition of signal transducer and activator of transcription phosphorylation (pSTAT) was measured by flow cytometry in peripheral blood mononuclear cells and whole blood from healthy donors and patients with RA following cytokine stimulation of distinct JAK/STAT pathways.

View Article and Find Full Text PDF

The availability of assays that predict the contribution of cytochrome P450 (CYP) metabolism allows for the design of new chemical entities (NCEs) with minimal oxidative metabolism. These NCEs are often substrates of non-CYP drug-metabolizing enzymes (DMEs), such as UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), carboxylesterases (CESs), and aldehyde oxidase (AO). Nearly 30% of clinically approved drugs are metabolized by non-CYP enzymes.

View Article and Find Full Text PDF

Current challenges in accurately predicting intestinal metabolism arise from the complex nature of the intestine, leading to limited applicability of available in vitro tools as well as knowledge deficits in intestinal physiology, including enzyme abundance. In particular, information on regional enzyme abundance along the small intestine is lacking, especially for non-cytochrome P450 enzymes such as carboxylesterases (CESs), UDP-glucuronosyltransferases (UGTs), and sulfotransferases (SULTs). We used cryopreserved human intestinal mucosa samples from nine donors as an in vitro surrogate model for the small intestine and performed liquid chromatography tandem mass spectrometry-based quantitative proteomics for 17 non-cytochrome P450 enzymes using stable isotope-labeled peptides.

View Article and Find Full Text PDF

Spleen tyrosine kinase (SYK) is a critical regulator of signaling in a variety of immune cell types such as B-cells, monocytes, and macrophages. Accordingly, there have been numerous efforts to identify compounds that selectively inhibit SYK as a means to treat autoimmune and inflammatory diseases. We previously disclosed GS-9973 (entospletinib) as a selective SYK inhibitor that is under clinical evaluation in hematological malignancies.

View Article and Find Full Text PDF

Introduction: Spleen tyrosine kinase (SYK) mediates signal transduction in multiple hematopoietic cells, including platelets. SYK signals downstream of immunoreceptors and SYK inhibition may ameliorate disease pathology in multiple autoimmune disorders; however, the impact of SYK inhibition in platelets and its potential relevance to bleeding is not fully understood. These studies evaluated the effect of an oral SYK inhibitor, GS-9876, on platelets in vitro and in vivo, and the impact of GS-9876 plus non-steroidal anti-inflammatory drugs (NSAIDs) on platelet aggregation.

View Article and Find Full Text PDF

Cyclophilins are a family of peptidyl-prolyl isomerases that are implicated in a wide range of diseases including hepatitis C. Our aim was to discover through total synthesis an orally bioavailable, non-immunosuppressive cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus (HCV) activity that could serve as part of an all oral antiviral combination therapy. An initial lead 2 derived from the sanglifehrin A macrocycle was optimized using structure based design to produce a potent and orally bioavailable inhibitor 3.

View Article and Find Full Text PDF

Background: The pharmacokinetics and safety of velpatasvir, a potent pangenotypic hepatitis C virus NS5A inhibitor, were evaluated in two hepatic impairment studies: a phase I study in hepatitis C virus-uninfected subjects and a phase III study (ASTRAL-4) in hepatitis C virus-infected patients.

Methods: In the phase I study, subjects with moderate or severe hepatic impairment (Child-Pugh-Turcotte Class B or C), and demographically matched subjects with normal hepatic function received a single dose of velpatasvir 100 mg. Pharmacokinetics and safety assessments were performed, and pharmacokinetic parameters were calculated using non-compartmental methods and summarized using descriptive statistics and compared statistically by geometric least-squares mean ratios and 90% confidence intervals.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in young children. Presatovir (previously GS-5806) is a novel, orally administered RSV fusion inhibitor with a favorable safety profile and proven antiviral efficacy in preclinical and clinical studies. In vitro, presatovir is a substrate of the efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) and hepatic uptake transporters organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 and is slowly metabolized by cytochrome P450 (CYP) 3A4 and CYP3A5.

View Article and Find Full Text PDF
Article Synopsis
  • Momelotinib (MMB) is a drug being developed to treat myeloproliferative neoplasms and works by inhibiting JAK1/2 and ACVR1.* -
  • A study showed MMB is quickly absorbed in the body, with most metabolites found in feces and only a small amount in urine, and it doesn't irreversibly bind to blood components.* -
  • The main metabolite, M21, is a strong inhibitor of JAK1/2 and ACVR1, and its formation in humans differs from animal models, highlighting the need for further studies on how it metabolizes and interacts with other drugs.*
View Article and Find Full Text PDF

We hereby disclose the discovery of inhibitors of CaMKII (7h and 7i) that are highly potent in rat ventricular myocytes, selective against hERG and other off-target kinases, while possessing good CaMKII tissue isoform selectivity (cardiac γ/δ vs. neuronal α/β). In vitro and in vivo ADME/PK studies demonstrated the suitability of these CaMKII inhibitors for PO (7h rat F = 73%) and IV pharmacological studies.

View Article and Find Full Text PDF

Late sodium current (late I) is enhanced during ischemia by reactive oxygen species (ROS) modifying the Na 1.5 channel, resulting in incomplete inactivation. Compound 4 (GS-6615, eleclazine) a novel, potent, and selective inhibitor of late I, is currently in clinical development for treatment of long QT-3 syndrome (LQT-3), hypertrophic cardiomyopathy (HCM), and ventricular tachycardia-ventricular fibrillation (VT-VF).

View Article and Find Full Text PDF

Idelalisib, a potent phosphatidylinositol-3-kinase delta (PI3Kδ) inhibitor, is metabolized primarily by aldehyde oxidase to form GS-563117 and to a lesser extent by cytochrome P450 (CYP) 3A and uridine 5'-diphospho-glucuronosyltransferase 1A4. In vitro, idelalisib inhibits P-glycoprotein (P-gp) and organic anion transporting polypeptides 1B1 and 1B3, and GS-563117 is a time-dependent CYP3A inhibitor. This study enrolled 24 healthy subjects and evaluated (1) the effect of idelalisib on the pharmacokinetics (PK) of digoxin, a P-gp probe substrate, rosuvastatin, a breast cancer resistance protein, and OATP1B1/OATP1B3 substrate, and midazolam, a CYP3A substrate; and (2) the effect of a strong inducer, rifampin, on idelalisib PK.

View Article and Find Full Text PDF

Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine.

View Article and Find Full Text PDF

The HIV protease inhibitor (PI) ritonavir (RTV) has been widely used as a pharmacoenhancer for other PIs, which are substrates of cytochrome P450 3A (CYP3A). However the potent anti-HIV activity of ritonavir may limit its use as a pharmacoenhancer with other classes of anti-HIV agents. Ritonavir is also associated with limitations such as poor physicochemical properties.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7fej0n73o45168n4dciqr32srssaoeht): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once