Transcription factors (TFs) and their specific interactions with targets are crucial for specifying gene-expression programs. To gain insights into the transcriptional regulatory networks in embryonic stem (ES) cells, we use chromatin immunoprecipitation coupled with ultra-high-throughput DNA sequencing (ChIP-seq) to map the locations of 13 sequence-specific TFs (Nanog, Oct4, STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb, Tcfcp2l1, E2f1, and CTCF) and 2 transcription regulators (p300 and Suz12). These factors are known to play different roles in ES-cell biology as components of the LIF and BMP signaling pathways, self-renewal regulators, and key reprogramming factors.
View Article and Find Full Text PDFBMC Bioinformatics
September 2006
Background: The splicing of RNA transcripts is thought to be partly promoted and regulated by sequences embedded within exons. Known sequences include binding sites for SR proteins, which are thought to mediate interactions between splicing factors bound to the 5' and 3' splice sites. It would be useful to identify further candidate sequences, however identifying them computationally is hard since exon sequences are also constrained by their functional role in coding for proteins.
View Article and Find Full Text PDFHedgehog proteins play critical roles in organizing the embryonic development of animals, largely through modulation of target gene expression. Little is currently known, however, about the kinds and numbers of genes whose expression is controlled, directly or indirectly, by Hedgehog activity. Using techniques to globally repress or activate Hedgehog signaling in zebrafish embryos followed by microarray-based expression profiling, we have discovered a cohort of genes whose expression responds significantly to loss or gain of Hedgehog function.
View Article and Find Full Text PDFOct4 and Nanog are transcription factors required to maintain the pluripotency and self-renewal of embryonic stem (ES) cells. Using the chromatin immunoprecipitation paired-end ditags method, we mapped the binding sites of these factors in the mouse ES cell genome. We identified 1,083 and 3,006 high-confidence binding sites for Oct4 and Nanog, respectively.
View Article and Find Full Text PDF