Publications by authors named "Bernard L Trumpower"

Atovaquone is a hydroxy-naphthoquinone that is used to treat parasitic and fungal infections including Plasmodium falciparum (malaria), Pneumocystis jivorecii (pneumonia) and Toxoplasma gondii (toxoplasmosis). It blocks mitochondrial oxidation of ubiquinol in these organisms by binding to the ubiquinol oxidation site of the cytochrome bc(1) complex. Failure of atovaquone treatment has been linked to the appearance of mutations in the mitochondrially encoded gene for cytochrome b.

View Article and Find Full Text PDF

The yeast cytochrome bc(1) complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc(1) complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc(1) assembly and the formation of a functionally inactive bc(1) core structure of about 500-kDa.

View Article and Find Full Text PDF

Atovaquone is a substituted 2-hydroxy-naphthoquinone used therapeutically against Plasmodium falciparum (malaria) and Pneumocystis pathogens. It acts by inhibiting the cytochrome bc(1) complex via interactions with the Rieske iron-sulfur protein and cytochrome b in the ubiquinol oxidation pocket. As the targeted pathogens have developed resistance to this drug there is an urgent need for new alternatives.

View Article and Find Full Text PDF

The mitochondrial cytochrome bc(1) complex (ubiquinol/cytochrome c oxidoreductase) is generally thought to generate superoxide anion that participates in cell signaling and contributes to cellular damage in aging and degenerative disease. However, the isolated, detergent-solubilized bc(1) complex does not generate measurable amounts of superoxide except when inhibited by antimycin. In addition, indirect measurements of superoxide production by cells and isolated mitochondria have not clearly resolved the contribution of the bc(1) complex to the generation of superoxide by mitochondria in vivo, nor did they establish the effect, if any, of membrane potential on superoxide formation by this enzyme complex.

View Article and Find Full Text PDF

Cytochrome b is a pivotal protein subunit of the cytochrome bc(1) complex and forms the ubiquinol oxidation site in the enzyme that is generally thought to be the primary site where electrons are aberrantly diverted from the enzyme, reacting with oxygen to form superoxide anion. In addition, recent studies have shown that mutations in cytochrome b can substantially increase rates of oxygen radical formation by the bc(1) complex. It would, thus, be advantageous to be able to manipulate cytochrome b by mutagenesis of the cytochrome b gene to better understand the role of cytochrome b in oxygen radical formation.

View Article and Find Full Text PDF

Quinol oxidation at center P of the cytochrome bc(1) complex involves bifurcated electron transfer to the Rieske iron-sulfur protein and cytochrome b. It is unknown whether both electrons are transferred from the same domain close to the Rieske protein, or if an unstable semiquinone anion intermediate diffuses rapidly to the vicinity of the b(L) heme. We have determined the pre-steady state rate and activation energy (E(a)) for quinol oxidation in purified yeast bc(1) complexes harboring either a Y185F mutation in the Rieske protein, which decreases the redox potential of the FeS cluster, or a E272Q cytochrome b mutation, which eliminates the proton acceptor in cytochrome b.

View Article and Find Full Text PDF

The assembly status of the cytochrome bc(1) complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc(1) subunits were deleted. In all the yeast strains tested, a bc(1) sub-complex of approximately 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS/PAGE and immunodecoration, revealed the presence of the two catalytic subunits, cytochrome b and cytochrome c(1), associated with the noncatalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p.

View Article and Find Full Text PDF

The mitochondrial cytochrome bc(1) complex is an essential respiratory enzyme in oxygen-utilizing eukaryotic cells. Its core subunit, cytochrome b, contains two sites, center P and center N, that participate in the electron transfer activity of the bc(1) complex and that can be blocked by specific inhibitors. In yeast, there are various point mutations that confer inhibitor resistance at center P or center N.

View Article and Find Full Text PDF

We have determined the kinetics of ilicicolin binding and dissociation at center N of the yeast bc(1) complex and its effect on the reduction of cytochrome b with center P blocked. The addition of ilicicolin to the oxidized complex resulted in a non-linear inhibition of the extent of cytochrome b reduction by quinol together with a shift of the reduced b(H) heme spectrum, indicating electron transfer between monomers. The possibility of a fast exchange of ilicicolin between center N sites was excluded in two ways.

View Article and Find Full Text PDF

The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

We have previously used inhibitors interacting with the Qn site of the yeast cytochrome bc(1) complex to obtain yeast strains with resistance-conferring mutations in cytochrome b as a means to investigate the effects of amino acid substitutions on Qn site enzymatic activity [M.G. Ding, J.

View Article and Find Full Text PDF

The dimeric cytochrome bc(1) complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc(1) complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N.

View Article and Find Full Text PDF

Energy transduction in the cytochrome bc(1) complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c(1) reduction at varying quinol/quinone ratios in the isolated yeast bc(1) complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the b(H) heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c(1) reduction indicated that the b(H) hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred.

View Article and Find Full Text PDF

We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N.

View Article and Find Full Text PDF

We have compared the efficacy of inhibition of the cytochrome bc1 complexes from yeast and bovine heart mitochondria and Paracoccus denitrificans by antimycin, ilicicolin H, and funiculosin, three inhibitors that act at the quinone reduction site at center N of the enzyme. Although the three inhibitors have some structural features in common, they differ significantly in their patterns of inhibition. Also, while the overall folding pattern of cytochrome b around center N is similar in the enzymes from the three species, amino acid sequence differences create sufficient structural differences so that there are striking differences in the inhibitors binding to the three enzymes.

View Article and Find Full Text PDF

Atovaquone is a substituted hydroxynaphthoquinone that is used therapeutically for treating Plasmodium falciparum malaria, Pneumocystis jirovecii pneumonia and Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting parasite and fungal respiration by binding to the cytochrome bc1 complex. The recent, growing failure of atovaquone treatment and increased mortality of patients with malaria or Pneumocystis pneumonia has been linked to the appearance of mutations in the cytochrome b gene.

View Article and Find Full Text PDF

We have examined the status of the cytochrome bc(1) complex in mitochondrial membranes from yeast mutants in which genes for one or more of the cytochrome bc(1) complex subunits were deleted. When membranes from wild-type yeast were resolved by native gel electrophoresis and analyzed by immunodecoration, the cytochrome bc(1) complex was detected as a mixed population of enzymes, consisting of cytochrome bc(1) dimers, and ternary complexes of cytochrome bc(1) dimers associated with one and two copies of the cytochrome c oxidase complex. When membranes from the deletion mutants were resolved and analyzed, the cytochrome bc(1) dimer was not associated with the cytochrome c oxidase complex in many of the mutant membranes, and membranes from some of the mutants contained a common set of cytochrome bc(1) subcomplexes.

View Article and Find Full Text PDF

The cytochrome bc1 complex recycles one of the two electrons from quinol (QH2) oxidation at center P by reducing quinone (Q) at center N to semiquinone (SQ), which is bound tightly. We have analyzed the properties of SQ bound at center N of the yeast bc1 complex. The EPR-detectable signal, which reports SQ bound in the vicinity of reduced bH heme, was abolished by the center N inhibitors antimycin, funiculosin, and ilicicolin H, but was unchanged by the center P inhibitors myxothiazol and stigmatellin.

View Article and Find Full Text PDF

We have investigated the mechanism responsible for half-of-the-sites activity in the dimeric cytochrome bc(1) complex from Paracoccus denitrificans by characterizing the kinetics of inhibitor binding to the ubiquinol oxidation site at center P. Both myxothiazol and stigmatellin induced a 2-3 nm shift of the visible absorbance spectrum of the b(L) heme. The shift generated by myxothiazol was symmetric, with monophasic kinetics that indicate equal binding of this inhibitor to both center P sites.

View Article and Find Full Text PDF

Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc(1) complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc(1) complex are not well understood. Atovaquone, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections.

View Article and Find Full Text PDF

We describe in detail the conformations of the inhibitor stigmatellin in its free form and bound to the ubiquinone-reducing (Q(B)) site of the reaction center and to the ubiquinol-oxidizing (Q(o)) site of the cytochrome bc(1) complex. We present here the first structures of a stereochemically correct stigmatellin in complexes with a bacterial reaction center and the yeast cytochrome bc1 complex. The conformations of the inhibitor bound to the two enzymes are not the same.

View Article and Find Full Text PDF

The cytochrome bc1 complex is a dimeric enzyme of the inner mitochondrial membrane that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is rereduced at a second center, referred to as center N. To better understand the mechanism of ubiquinol oxidation, we have examined catalytic activities and pre-steady-state reduction kinetics of yeast cytochrome bc1 complexes with mutations in cytochrome b that we expected would affect oxidation of ubiquinol. We mutated two residues thought to be involved in proton conduction linked to ubiquinol oxidation, Tyr132 and Glu272, and two residues proposed to be involved in docking ubiquinol into the center P pocket, Phe129 and Tyr279.

View Article and Find Full Text PDF

The cytochrome bc complexes found in mitochondria, chloroplasts and many bacteria play critical roles in their respective electron transport chains. The quinol oxidase (Q(o)) site in this complex oxidizes a hydroquinone (quinol), reducing two one-electron carriers, a low potential cytochrome b heme and the "Rieske" iron-sulfur cluster. The overall electron transfer reactions are coupled to transmembrane translocation of protons via a "Q-cycle" mechanism, which generates proton motive force for ATP synthesis.

View Article and Find Full Text PDF

The cytochrome bc1 complex resides in the inner membrane of mitochondria and transfers electrons from ubiquinol to cytochrome c. This electron transfer is coupled to the translocation of protons across the membrane by the protonmotive Q cycle mechanism. This mechanism topographically separates reduction of quinone and reoxidation of quinol at sites on opposite sites of the membrane, referred to as center N (Qn site) and center P (Qp site), respectively.

View Article and Find Full Text PDF