In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including the dysfunction of the neuroprotective protein parkin.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) are at the core of all key biological processes. However, the complexity of the structural features that determine PPIs makes their design challenging. We present BindCraft, an open-source and automated pipeline for protein binder design with experimental success rates of 10-100%.
View Article and Find Full Text PDFBackground: The liver is a key metabolic organ, acting as a hub to metabolically connect various tissues. Spinal muscular atrophy (SMA) is a neuromuscular disorder whereby patients have an increased susceptibility to developing dyslipidaemia and liver steatosis. It remains unknown whether fatty liver is due to an intrinsic or extrinsic impact of survival motor neuron (SMN) protein depletion.
View Article and Find Full Text PDFHere, we describe methods for the production of adeno-associated viral (AAV) vectors by transient transfection of HEK293 cells grown in serum-free medium using orbital shaken bioreactors and the subsequent purification of vector particles. The protocol for expression of AAV components is based on polyethyleneimine (PEI)-mediated transfection of a three-plasmid system and is specified for production in milliliter-to-liter scales. After PEI and plasmid DNA (pDNA) complex formation, the diluted cell culture is transfected without a prior concentration step or medium exchange.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by motor neuron loss and skeletal muscle atrophy. SMA is caused by the loss of the SMN1 gene and low SMN protein levels. Current SMA therapies work by increasing SMN protein in the body.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are the most common motoneuron diseases affecting adults and infants, respectively. ALS and SMA are both characterized by the selective degeneration of motoneurons. Although different in their genetic etiology, growing evidence indicates that they share molecular and cellular pathogenic signatures that constitute potential common therapeutic targets.
View Article and Find Full Text PDFIn Parkinson's disease, pathogenic factors such as the intraneuronal accumulation of the protein α-synuclein affect key metabolic processes. New approaches are required to understand how metabolic dysregulations cause degeneration of vulnerable subtypes of neurons in the brain. Here, we apply correlative electron microscopy and NanoSIMS isotopic imaging to map and quantify C enrichments in dopaminergic neurons at the subcellular level after pulse-chase administration of C-labeled glucose.
View Article and Find Full Text PDFThe cellular prion protein PrP mediates the neurotoxicity of prions and other protein aggregates through poorly understood mechanisms. Antibody-derived ligands against the globular domain of PrP (GDL) can also initiate neurotoxicity by inducing an intramolecular R -H hydrogen bond ("H-latch") between the α2-α3 and β2-α2 loops of PrP . Importantly, GDL that suppresses the H-latch prolong the life of prion-infected mice, suggesting that GDL toxicity and prion infections exploit convergent pathways.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the SMN1 gene and low SMN protein levels. Although lower motor neurons are a primary target, there is evidence that peripheral organ defects contribute to SMA. Current SMA gene therapy and clinical trials use a single intravenous bolus of the blood-brain-barrier penetrant scAAV9-cba-SMN by either systemic or central nervous system (CNS) delivery, resulting in impressive amelioration of the clinical phenotype but not a complete cure.
View Article and Find Full Text PDFGlia
May 2022
In amyotrophic lateral sclerosis (ALS) caused by SOD1 gene mutations, both cell-autonomous and noncell-autonomous mechanisms lead to the selective degeneration of motoneurons (MN). Here, we evaluate the therapeutic potential of gene therapy targeting mutated SOD1 in mature astrocytes using mice expressing the mutated SOD1 protein. An AAV-gfaABC D vector encoding an artificial microRNA is used to deliver RNA interference against mutated SOD1 selectively in astrocytes.
View Article and Find Full Text PDFSkeletal muscle displays remarkable plasticity upon exercise and is also one of the organs most affected by aging. Despite robust evidence that aging is associated with loss of fast-twitch (type II) muscle fibers, the underlying mechanisms remain to be elucidated. Here, we identified an exercise-induced long noncoding RNA, , whose exercise responsiveness was conserved in human and rodents.
View Article and Find Full Text PDFBile acids (BAs) are signalling molecules that mediate various cellular responses in both physiological and pathological processes. Several studies report that BAs can be detected in the brain, yet their physiological role in the central nervous system is still largely unknown. Here we show that postprandial BAs can reach the brain and activate a negative-feedback loop controlling satiety in response to physiological feeding via TGR5, a G-protein-coupled receptor activated by multiple conjugated and unconjugated BAs and an established regulator of peripheral metabolism.
View Article and Find Full Text PDFThere is no FDA-approved medication for methamphetamine (METH) use disorder. New therapeutic approaches are needed, especially for people who use METH heavily and are at high risk for overdose. This study used genetically engineered rats to evaluate PARKIN as a potential target for METH use disorder.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease wherein motor neuron degeneration leads to muscle weakness, progressive paralysis, and death within 3-5 years of diagnosis. Currently, the cause of ALS is unknown but, as with several neurodegenerative diseases, the potential role of neuroinflammation has become an increasingly popular hypothesis in ALS research. Indeed, upregulation of neuroinflammatory factors have been observed in both ALS patients and animal models.
View Article and Find Full Text PDFα-Synuclein aggregation at the synapse is an early event in Parkinson's disease and is associated with impaired striatal synaptic function and dopaminergic neuronal death. The cysteine string protein (CSPα) and α-synuclein have partially overlapping roles in maintaining synaptic function and mutations in each cause neurodegenerative diseases. CSPα is a member of the DNAJ/HSP40 family of co-chaperones and like α-synuclein, chaperones the SNARE complex assembly and controls neurotransmitter release.
View Article and Find Full Text PDFDendritic cells (DCs) are professional antigen-presenting cells involved in the initiation of immune responses. We generated a tolerogenic DC (tolDC) line that constitutively secretes interleukin-10 (IL10-DCs), expressed lower levels of co-stimulatory and MHCII molecules upon stimulation, and induced antigen-specific proliferation of T cells. Vaccination with IL10-DCs combined with another tolDC line that secretes IL-35, reduced antigen-specific local inflammation in a delayed-type hypersensitivity assay independently on regulatory T cell differentiation.
View Article and Find Full Text PDFBackground: Emerging evidence points to a central role of mitochondria in psychiatric disorders. However, little is known about the molecular players that regulate mitochondria in neural circuits regulating anxiety and depression and about how they impact neuronal structure and function. Here, we investigated the role of molecules involved in mitochondrial dynamics in medium spiny neurons (MSNs) from the nucleus accumbens (NAc), a hub of the brain's motivation system.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
January 2022
Background & Aims: Nonalcoholic fatty liver disease (NAFLD) is considered a health epidemic with potential devastating effects on the patients and the healthcare systems. Current preclinical models of NAFLD are invariably imperfect and generally take a long time to develop. A mouse model of survival motor neuron (SMN) depletion (Smn mice) was recently shown to develop significant hepatic steatosis in less than 2 weeks from birth.
View Article and Find Full Text PDFThe brain pathology of Alzheimer's disease (AD) is characterized by the misfolding and aggregation of both the amyloid beta (Aβ) peptide and hyperphosphorylated forms of the tau protein. Initial Aβ deposition is considered to trigger a sequence of deleterious events contributing to tau pathology, neuroinflammation and ultimately causing the loss of synapses and neurons. To assess the effect of anti-Aβ immunization in this context, we generated a mouse model by overexpressing the human tau protein in the hippocampus of 5xFAD mice.
View Article and Find Full Text PDFAAV-mediated gene therapy is a promising approach for treating genetic hearing loss. Replacement or editing of the Tmc1 gene, encoding hair cell mechanosensory ion channels, is effective for hearing restoration in mice with some limitations. Efficient rescue of outer hair cell function and lack of hearing recovery with later-stage treatment remain issues to be solved.
View Article and Find Full Text PDFSub-cellular trace element quantifications of nano-heterogeneities in brain tissues offer unprecedented ways to explore at elemental level the interplay between cellular compartments in neurodegenerative pathologies. We designed a quasi-correlative method for analytical nanoimaging of the substantia nigra, based on transmission electron microscopy and synchrotron X-ray fluorescence. It combines ultrastructural identifications of cellular compartments and trace element nanoimaging near detection limits, for increased signal-to-noise ratios.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is characterized by a severe loss of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Perturbation of protein thiol redox homeostasis has been shown to play a role in the dysregulation of cell death and cell survival signaling pathways in these neurons. Glutaredoxin 1 (Grx1) is a thiol/disulfide oxidoreductase that catalyzes the deglutathionylation of proteins and is important for regulation of cellular protein thiol redox homeostasis.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a neuromuscular disorder affecting young children. While pre-clinical models of SMA show small spleens, the same is not true in humans. Here, we show by doppler ultrasonography decreased splenic blood flow in Smn2B/- mice.
View Article and Find Full Text PDFViral delivery of exogenous coding sequences into the inner ear has the potential for therapeutic benefit for patients suffering genetic or acquired hearing loss. To devise improved strategies for viral delivery, we investigated two injection techniques, round window membrane injection or a novel utricle injection method, for their ability to safely and efficiently transduce sensory hair cells and neurons of the mouse inner ear. In addition, we evaluated three synthetic AAV vectors (Anc80L65, AAV9-PHP.
View Article and Find Full Text PDF