Plasmodesmata (Pd) are membranous channels that serve as a major conduit for cell-to-cell communication in plants. The Pd-associated β-1,3-glucanase (BG_pap) and CALLOSE BINDING PROTEIN1 (PDCB1) were identified as key regulators of Pd conductivity. Both are predicted glycosylphosphatidylinositol-anchored proteins (GPI-APs) carrying a conserved GPI modification signal.
View Article and Find Full Text PDFCallose (β-1,3-glucan) is both structural and functional component of plasmodesmata (Pd). The turnover of callose at Pd controls the cell-to-cell diffusion rate of molecules through Pd. An accurate assessment of changes in levels of Pd-associated callose has become a first-choice experimental approach in the research of intercellular communication in plants.
View Article and Find Full Text PDFMol Plant Microbe Interact
September 2013
β-1,3-Glucanases (BG) have been implicated in enhancing virus spread by degrading callose at plasmodesmata (Pd). Here, we investigate the role of Arabidopsis BG in tobamovirus spread. During Turnip vein clearing virus infection, the transcription of two pathogenesis-related (PR)-BG AtBG2 and AtBG3 increased but that of Pd-associated BG AtBG_pap did not change.
View Article and Find Full Text PDFThe turnover of callose (β-1,3-glucan) within cell walls is an essential process affecting many developmental, physiological and stress related processes in plants. The deposition and degradation of callose at the neck region of plasmodesmata (Pd) is one of the cellular control mechanisms regulating Pd permeability during both abiotic and biotic stresses. Callose accumulation at Pd is controlled by callose synthases (CalS; EC 2.
View Article and Find Full Text PDFArabidopsis class 1 reversibly glycosylated polypeptides (C1RGPs) were shown to be plasmodesmal-associated proteins. Transgenic tobacco (Nicotiana tabacum) plants constitutively expressing GFP tagged AtRGP2 under the control of the CaMV 35S promoter are stunted, have a rosette-like growth pattern, and in source leaves exhibit strong chlorosis, increased photoassimilate retention and starch accumulation that results in elevated leaf specific fresh and dry weights. Basal callose levels around plasmodesmata (Pd) of leaf epidermal cells in transgenic plants are higher than in WT.
View Article and Find Full Text PDFPlant viruses spread cell-to-cell by exploiting and modifying plasmodesmata, coaxial membranous channels that cross cell walls and interlink the cytoplasm, endoplasmic reticulum and plasma-membranes of contiguous cells. To facilitate viral spread, viruses encode for one or more movement proteins that interact with ER and ER derived membranes, bind vRNA and target to Pd. Mounting evidence suggests that RNA viruses that do not spread as virions employ the same basic mechanism to facilitate cell-to-cell spread.
View Article and Find Full Text PDFPlasmodesmata (Pd) are trans-wall membrane channels that permit cell-to-cell transport of metabolites and other small molecules, proteins, RNAs, and signaling molecules. The transport of cytoplasmic soluble macromolecules is a function of the electrochemical gradient between adjacent cells, the number of Pd per interface between adjacent cells, Stokes radius (R(S)), area of the cytoplasmic annulus, and channel length. The size of the largest molecule that can pass through Pd defines the Pd size exclusion limit.
View Article and Find Full Text PDFVirus spread through plasmodesmata (Pd) is mediated by virus-encoded movement proteins (MPs) that modify Pd structure and function. The MP of Tobacco mosaic virus ((TMV)MP) is an endoplasmic reticulum (ER) integral membrane protein that binds viral RNA (vRNA), forming a vRNA:MP:ER complex. It has been hypothesized that (TMV)MP causes Pd to dilate, thus potentiating a cytoskeletal mediated sliding of the vRNA:MP:ER complex through Pd; in the absence of MP, by contrast, the ER cannot move through Pd.
View Article and Find Full Text PDFPlant Signal Behav
September 2007
Plasmodesmata (Pd), coaxial membranous channels that connect adjacent plant cells, are not static, but show a dynamic nature and can be opened or closed. These controlled changes in Pd conductivity regulate plant symplasmic permeability and play a role both in development and defense processes. One of the mechanisms shown to produce these changes is the deposition and hydrolysis of callose by beta-1-3-synthase and glucanase, respectively.
View Article and Find Full Text PDFPlasmodesmal conductivity is regulated in part by callose turnover, which is hypothesized to be determined by beta-1,3-glucan synthase versus glucanase activities. A proteomic analysis of an Arabidopsis thaliana plasmodesmata (Pd)-rich fraction identified a beta-1,3-glucanase as present in this fraction. The protein encoded by the putative plasmodesmal associated protein (ppap) gene, termed AtBG_ppap, had previously been found to be a post-translationally modified glycosylphosphatidylinositol (GPI) lipid-anchored protein.
View Article and Find Full Text PDFAn environmentally safe Tobacco Mosaic Virus (TMV)-based expression replicon was constructed that lacks movement protein (MP) and coat protein (CP), and which expresses the green fluorescent protein (GFP) gene from a full CP subgenomic promoter. The TMV replicon, whose cDNA was positioned between an enhanced Cauliflower Mosaic Virus 35S promoter (CaMV) and a self-cleaving hammerhead ribozyme with a downstream nopaline synthase gene polyadenylation signal [nos-poly(A)], was assessed for its effectiveness to accumulate GFP upon agroinfiltration into plant leaves compared to a control construct in which GFP was directly expressed from the enhanced CaMV 35S promoter. It was determined that individually expressing cells produced ca.
View Article and Find Full Text PDFSE-WAP41, a salt-extractable 41-kD wall-associated protein that is associated with walls of etiolated maize (Zea mays) seedlings and is recognized by an antiserum previously reported to label plasmodesmata and the Golgi, was cloned, sequenced, and found to be a class 1 reversibly glycosylated polypeptide ((C1)RGP). Protein gel blot analysis of cell fractions with an antiserum against recombinant SE-WAP41 showed it to be enriched in the wall fraction. RNA gel blot analysis along the mesocotyl developmental axis and during deetiolation demonstrates that high SE-WAP41 transcript levels correlate spatially and temporally with primary and secondary plasmodesmata (Pd) formation.
View Article and Find Full Text PDFPlasmodesmata (Pd) are channels in the plant cell wall that in conjunction with associated phloem form an intercellular communication network that supports the cell-to-cell and long-distance trafficking of a wide spectrum of endogenous proteins and ribonucleoprotein complexes. The trafficking of such macromolecules is of importance in the orchestration of non-cell autonomous developmental and physiological processes. Plant viruses encode movement proteins (MPs) that subvert this communication network to facilitate the spread of infection.
View Article and Find Full Text PDFA replicon based on Tobacco mosaic virus that was engineered to express the open reading frame (ORF) of the green fluorescent protein (GFP) gene in place of the native coat protein (CP) gene from a minimal CP subgenomic (sg) RNA promoter was found to accumulate very low levels of GFP. Regulatory regions within the CP ORF were identified that, when presented as untranslated regions flanking the GFP ORF, enhanced or inhibited sg transcription and GFP expression. Full GFP expression from the CP sgRNA promoter required more than the first 20 nt of the CP ORF but not beyond the first 56 nt.
View Article and Find Full Text PDF