Publications by authors named "Bernard Haochih Liu"

High-entropy alloys (HEAs) provide new research avenues for alloy combinations in the periodic table, opening numerous possibilities in novel-alloy applications. However, their electrical characteristics have been relatively underexplored. The challenge in establishing an HEA electrical conductivity model lies in the changes in electronic characteristics caused by lattice distortion and complexity of nanostructures.

View Article and Find Full Text PDF

A method using label-free surface enhanced Raman spectroscopy (SERS) based on substrate design is provided for an early detection and differentiation of spike glycoprotein mutation sites in live SARS-CoV-2 variants. Two SERS-active substrates, Au nanocavities (Au NCs) and Au NPs on porous ZrO (Au NPs/pZrO), were used to identify specific peaks of A.3, Alpha, and Delta variants at different concentrations and demonstrated the ability to provide their SERS spectra with detection limits of 0.

View Article and Find Full Text PDF

The COVID-19 pandemic negatively affected the economy and health security on a global scale, causing a drastic change on lifestyle, calling a need to mitigate further transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Surface-enhanced Raman spectroscopy (SERS) has shown great potential in the sensitive and rapid detection of various molecules including viruses, through the identification of characteristic peaks of their outer membrane proteins. Accurate detection can be developed through the synergistic integration effect among SERS-active substrate, the appropriate laser wavelength, and the target analyte.

View Article and Find Full Text PDF

() is widely regarded as the main cause of human dental caries via three main virulence factors: adhesion, acidogenicity, and aciduricity. Citric acid is one of the antibiotic agents that can inhibit the virulence capabilities of . A full understanding of the acidic resistance mechanisms (ARMs) causing bacteria to thrive in citrate transport is still elusive.

View Article and Find Full Text PDF

Nanostructures with spikes (NSPs) have been a subject of several surface-enhanced Raman scattering (SERS) applications owing to their significant Raman signal enhancement brought about by the combined effects of interspike coupling and the accumulated induction on the tips of spikes. Thus, NSPs offer great potential as a SERS-active substrate for relevant applications that require a high density of enhanced "hot spots". In this study, Ag NSPs were synthesized in varying degrees of agglomeration and were thereafter deposited onto a transparent adhesive tape as a flexible substrate for SERS applications, specifically, in the detection of trace amounts of pesticides.

View Article and Find Full Text PDF

Health risks posed by the exposure to trace amounts of pesticide residue in agricultural products have gained a lot of concerns, due to their neurotoxic nature. The applications of surface-enhanced Raman Scattering (SERS) as a detection technique have consistently shown its potential as a rapid and sensitive means with minimal sample preparation. In this study, gold nanoparticles (Au NPs) in elliptical shapes were collected into a layer of ordered zirconia concave pores.

View Article and Find Full Text PDF

We investigated the subsurface biomatrix of the most abundant As-mineral, arsenopyrite (FeAsS), and meticulously studied a potential biogenic arsenic mobilization phenomenon. An arsenic-resistant [up to 7.5 mM As(III) and 200 mM As(V)] and arsenate-reducing bacterial strain (Staphylococcus sp.

View Article and Find Full Text PDF

Strontium oxide (SrO) deposited onto a porous titanium (Ti)-based scaffold (P-Ti) is a promising and novel approach for high-throughput transesterification. Notably, a highly porous and calcinated scaffold provides a load-bearable support for a continuous process, while the calcinated SrO catalyst, as it is well distributed inside the porous matrix, can extend its surface contact area with the reactant. In this work, the formation of transesterification reaction with the conversion and production of olive oil to biodiesel inside the porous matrix is particularly examined.

View Article and Find Full Text PDF

Trace detection of common pesticide residue is necessary to assure safety of fruit and vegetables, given that the potential health risk to consumers is attributed to the contamination of the sources. A simple, rapid and effective means of finding the residue is however required for household purposes. In recent years, the technique in association with surface-enhanced Raman scattering (SERS) has been well developed in particular for trace detection of target molecules.

View Article and Find Full Text PDF

The categorization of microbial strains is conventionally based on the molecular method, and seldom are the morphological characteristics in the bacterial strains studied. In this research, we revealed the macromolecular structures of the bacterial surface via AFM mechanical mapping, whose resolution was not only determined by the nanoscale tip size but also the mechanical properties of the specimen. This technique enabled the nanoscale study of membranous structures of microbial strains with simple specimen preparation and flexible working environments, which overcame the multiple restrictions in electron microscopy and label-enable biochemical analytical methods.

View Article and Find Full Text PDF

Porous titanium (P_Ti) is considered as an effective material for bone scaffold to achieve a stiffness reduction. Herein, biomimetic (bio-)scaffolds were made of sintered P_Ti, which used NaCl as the space holder and had it removed via the hydrothermal method. X-ray diffraction results showed that the subsequent sintering temperature of 1000 °C was the optimized temperature for preparing P_Ti.

View Article and Find Full Text PDF

The surface morphologies and microstructures of Zirconia Toughened Alumina (ZTA) femoral heads were analyzed following in vitro tests aiming to simulate in vivo degradation. Three phenomena potentially leading to degradation were investigated: shocks, friction and hydrothermal ageing. Shocks due to micro-separation created the main damage with the formation of wear stripes on the femoral head surfaces.

View Article and Find Full Text PDF

The mechanical properties of the extracellular matrix play an important role in bio-microenvironment activities. Herein, atomic force microscope (AFM) was used to measure the interaction between Au and Ag nanoparticle (NP) clusters on the surface of human fetal lung cells. Using (3-mercapto-propyl) triethoxysilane (MPTMS), NP clusters were grafted onto the apex of AFM tip, and then, the adhesion force between the tip and the cell was analyzed.

View Article and Find Full Text PDF

Streptococcus mutans is one of the main pathogens that cause tooth decay. By metabolizing carbohydrates, S. mutans emits extracellular polymeric substance (EPS) that adheres to the tooth surface and forms layers of biofilm.

View Article and Find Full Text PDF

A Li-Mn-O thin-film electrode probe has been developed via a facile synthesis process, which enables nanoscale electrochemical investigation of the solid-state electrolyte LiPON. Detailed information of ion transport can be obtained by the thin-film probe, rather than the macroscale electrochemical impedance analysis. It is clarified from the nanoscale analysis that the charge transfer resistance at the Li-Mn-O/LiPON interface dominates the localized impedance, while it can be significantly reduced rather than the electrolyte resistance by applying a DC bias.

View Article and Find Full Text PDF

Well-ordered Au-nanorod arrays were fabricated using the focused ion beam method (denoted as fibAu_NR). Au or Ag nanoclusters (NCs) of various sizes and dimensions were then deposited on the fibAu_NR arrays using electron beam deposition to improve the surface-enhanced Raman scattering (SERS) effect, which was verified using a low concentration of crystal violet (10(-)(5)M) as the probe molecule. An enhancement factor of 6.

View Article and Find Full Text PDF

A well-ordered Au-nanorod array with a controlled tip ring diameter (Au_NRsd) was fabricated using the focused ion beam method. Au_NRsd was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au_NRsd and Ag NPs/Au_NRsd was particularly verified using crystal violet (CV) as the molecular probe.

View Article and Find Full Text PDF

We report a unique bio-nanomechanical behavior at the septum (Z-ring) of Streptococcus mutans-containing biofilm through in situ measurements obtained by atomic force microscopy. A distinct serrated pattern on the releasing force-displacement curves can only be observed with the use of a sharp nanosized probe tip, and this was found at the septum of S. mutans.

View Article and Find Full Text PDF

The in-use wear of atomic force microscopy (AFM) probe tips is crucial for the reliability of AFM measurements. Increase of tip size for several nanometers is difficult to monitor but it can already taint subsequent AFM data. We have developed a method to study the shape evolution of AFM probe tips in nanometer scale.

View Article and Find Full Text PDF

We proposed and demonstrated a flexible and effective method to design and fabricate scanning probes for atomic force microscopy applications. Computer simulations were adopted to evaluate design specifications and desired performance of atomic force microscope (AFM) probes; the fabrication processes were guided by feedback from simulation results. Through design-simulation-fabrication iterations, tipless cantilevers and tapping mode probes were successfully made with errors as low as 2% in designed resonant frequencies.

View Article and Find Full Text PDF