We describe the investigation of metal halide perovskite layers, particularly CHNHPbI used in photovoltaic applications, by soft X-ray scanning transmission X-ray microscopy (STXM). Relevant reference spectra were used to fit the experimental data using singular value decomposition. The distribution of key elements Pb, I, and O was determined throughout the layer stack of two samples prepared by wet process.
View Article and Find Full Text PDFWe report the substitution of λ-phosphinines (2,6-dicarbonitrile diphenyl-1-λ-phosphinine) with an amino group. The impact of these modifications on both the optical and redox properties is investigated using a joint experimental/theoretical approach. In particular, we show that the choice of the donor diphenylamino group dramatically impacts the nature of the charge transfer.
View Article and Find Full Text PDFOrganic-inorganic metal halide perovskites (MHPs) have recently been receiving a lot of attention due to their newfound application in optoelectronic devices, including perovskite solar cells (PSCs) which have reached power conversion efficiencies as high as 25.5%. However, the fundamental mechanisms in PSCs, including the correlation of degradation with the excellent optoelectrical properties of the perovskite absorbers, are poorly understood.
View Article and Find Full Text PDFWe report a straightforward synthesis of Si-containing Polycyclic Aromatic Hydrocarbons (PAHs). The impact of π-extension and exocyclic modifications on both the optical and redox properties is investigated using a joint experimental/theoretical approach. By taking advantage of the solid-state luminescence of these derivatives, electroluminescent devices are prepared.
View Article and Find Full Text PDFA new series of 2,4,6-triaryl-λ -phosphinines have been synthesized that contain different substituents both on the carbon backbone and the phosphorus atom of the six-membered heterocycle. Their optical and redox properties were studied in detail, supported by in-depth theoretical calculations. The modularity of the synthetic strategy allowed the establishment of structure-property relationships for this class of compounds and an OLED based on a blue phosphinine emitter could be developed for the first time.
View Article and Find Full Text PDFThis article presents the synthesis of a new family of naphthyl-fused phosphepines through Ni-mediated C-C coupling. Interestingly, the chlorophosphine oxide intermediate shows strong resistance toward oxidation/hydrolysis owing to a combination of steric hindrance and pnictogen interactions. However, it can undergo substitution reactions under specific conditions.
View Article and Find Full Text PDFHerein, the experimental physicochemical and chiroptical properties of a series of phosphahelicenes are reported, focusing on their UV/Vis absorption, luminescence, electronic circular dichroism, optical rotations, and circularly polarized luminescence. Furthermore, detailed analysis of absorption and ECD spectra performed with the help of quantum-chemical calculations allowed us to highlight general features of these helicenic phosphines. Finally, due to well-suited electrochemical properties and thermal stability, the systems were successfully used as emitters in organic light-emitting diodes.
View Article and Find Full Text PDFWe propose a novel method to pattern the charge recombination layer (CRL) with a low-temperature solution-processable ZnO layer (under 150 °C) for organic solar cell applications. Due to the optimal drying process and thermal annealing condition, ZnO sol-gel particles formed a three-Dimensional (3D) structure without using a high temperature or ramping method. The generated 3D nano-ripple pattern showed a height of around 120 nm, and a valley-to-valley distance of about 500 nm.
View Article and Find Full Text PDFHybrid perovskites have emerged over the past five years as absorber layers for novel high-efficiency low-cost solar cells combining the advantages of organic and inorganic semiconductors. Unfortunately, electrical transport in these materials is still poorly understood. Employing the linear response approach of density functional theory, we reveal strong anharmonic effects and a double-well phonon instability at the center of the Brillouin zone for both cubic and orthorhombic phases of inorganic CsPbI.
View Article and Find Full Text PDFThe present works report the first structure-property relationship study of a key class of organic semiconductors, that is, the four spirobifluorene positional isomers possessing a para-, meta- or ortho-linkage. The remarkable and surprising impact of the ring bridging and of the linkages on the electronic properties of the regioisomers has been particularly highlighted and rationalised. The impact of the ring bridging on the photophysical properties has been stressed with notably the different influence of the linkages and the bridge on the singlet and triplet excited states.
View Article and Find Full Text PDFWe report herein a detailed structure-properties relationship study of the first examples of electron-rich 4-substituted spirobifluorenes for organic electronic applications, namely, 4-phenyl-N-carbazole-spirobifluorene (4-PhCz-SBF) and 4-(3,4,5-trimethoxyphenyl)-spirobifluorene (4-Ph(OMe)-SBF). The incorporation of the electron-rich moieties in the ortho position of the biphenyl linkage (position C4) induces unique properties, very different from those previously described in the literature for this family of semiconductors. Both dyes can be readily synthesized, possess high triplet energies and excellent thermal stability, and their HOMO energy levels are highly increased compared to those of other 4-substituted SBFs.
View Article and Find Full Text PDFA new electron-rich fragment, namely the quinolinophenothiazine (QPTZ) is reported. The QPTZ fragment incorporated in spiroconfigured materials leads to higher performance in blue Phosphorescent OLEDs than structurally related phenylacridine and indoloacridine based materials (increasing the HOMO energy level, modulating the spin-orbit coupling, etc.) and leads to highly efficient blue phosphorescent organic light emitting diodes, indicating the strong potential of this new molecular fragment in organic electronics.
View Article and Find Full Text PDFInvestigating the stability and evaluating the quality of the CH₃NH₃PbI₃ perovskite structures is quite critical both to the design and fabrication of high-performance perovskite devices and to fundamental studies of the photophysics of the excitons. In particular, it is known that, under ambient conditions, CH₃NH₃PbI₃ degrades producing some PbI₂. We show here that low temperature Photoluminescence (PL) spectroscopy is a powerful tool to detect PbI₂ traces in hybrid perovskite layers and single crystals.
View Article and Find Full Text PDFThis work reports a detailed structure-property relationship study of a series of efficient host materials based on the donor-spiro-acceptor (D-spiro-A) design for green and sky-blue phosphorescent organic light-emitting diodes (PhOLEDs). The electronic and physical effects of the indoloacridine (IA) fragment connected through a spiro bridge to different acceptor units, namely, fluorene, dioxothioxanthene or diazafluorene moiety, have been investigated in depth. The resulting host materials have been easily synthesised through short, efficient, low-cost, and highly adaptable synthetic routes by using common intermediates.
View Article and Find Full Text PDFThis work describes the first thermally activated delayed fluorescence material enabling circularly polarized light emission through chiral perturbation. These new molecular architectures obtained through a scalable one-pot sequential synthetic procedure at room temperature (83% yield) display high quantum yield (up to 74%) and circularly polarized luminescence with an absolute luminescence dissymmetry factor, |glum|, of 1.3 × 10(-3).
View Article and Find Full Text PDFA new host material based on the 2,7,4'-substituted spirobifluorene platform has been designed and used in single-layer phosphorescent OLED with very high efficiency (EQE = 13.2%) and low turn-on voltage (2.4 V).
View Article and Find Full Text PDFOrganic semiconductors have great potential for producing hydrogen in a durable and economically viable manner because they rely on readily available materials and can be solution-processed over large areas. With the objective of building efficient hybrid organic-inorganic photoelectrochemical cells, we combined a noble-metal-free and solution-processable catalyst for proton reduction, MoS3, and a poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction (BHJ). Different interfacial layers were investigated to improve the charge transfer between P3HT:PCBM and MoS3.
View Article and Find Full Text PDFNew families of donor/acceptor semiconductors based on dihydroindeno[1,2-a]fluorene and dihydroindeno[2,1-b]fluorene are reported. Due to the spiro bridges, this new generation of dihydroindenofluorenes allows a spatial separation of HOMO and LUMO, which retains the high ET value of the dihydroindenofluorene backbone and excellent physical properties. This control of the electronic and physical properties has allowed a second generation of dihydroindeno[1,2-a]fluorene to be obtained with strongly enhanced performance in green and sky-blue phosphorescent organic light-emitting diodes (PhOLEDs) relative to the first generation of materials.
View Article and Find Full Text PDFWe describe the synthesis and the physical properties of polyaromatic hydrocarbons (PAHs) containing a phosphorus atom at the edge. In particular, the impact of the successive addition of aromatic rings on the electronic properties was investigated by experimental (UV/Vis absorption, fluorescence, cyclic voltammetry) and theoretical studies (DFT). The physical properties recorded in solution and in the solid state showed that the P-containing PAHs exhibit properties expected for an emitter in white organic light-emitting diodes (WOLEDs).
View Article and Find Full Text PDFA new high triplet organic semi-conductor based on a donor-spiro-acceptor design has been synthesised and used as a host material in high performance (EQE = 11.4%) sky blue phosphorescent organic light emitting diodes.
View Article and Find Full Text PDFThis work reports the first structure-properties relationship study of ortho [2,1-c]-, meta [1,2-a]-, and para [1,2-b]dihydroindenofluorenes, highlighting the influence of bridge rigidification on the electronic properties. This study has made it possible to devise an extended π-conjugated molecule with both a high triplet state energy level and excellent thermal and morphological stability. As a proof of concept, dihydroindenofluorenes were used as the host in sky-blue phosphorescent organic light-emitting diodes (PhOLEDs) with high performance.
View Article and Find Full Text PDFThe discovery and molecular engineering of novel electroluminescent materials is still a challenge in optoelectronics. In this work, the development of new π-conjugated oligomers incorporating a dihydrophosphete skeleton is reported. Variation of the substitution pattern of 1,2-dihydrophosphete derivatives and chemical modification of their P atoms afford thermally stable derivatives, which are suitable emitters to construct organic light-emitting diodes (OLEDs).
View Article and Find Full Text PDFAn organic solar cell based on a poly-3-hexylthiophene (P3HT): phenyl-C-butyric acid (PCBM) bulk hetero-junction was directly coupled with molybdenum sulfide resulting in the design of a new type of photocathode for the production of hydrogen. Both the light-harvesting system and the catalyst were deposited by low-cost solution-processed methods, i.e.
View Article and Find Full Text PDF