Publications by authors named "Bernard Fendler"

Introduction: MET amplification (METamp) can be a de novo or acquired resistance driver; however, the definition of METamp that best captures patients who may respond to targeted therapy remains debated. We explored the genomic landscape of METamp NSCLC including degree of amplification, co-drivers, amplicon size, and outcomes to MET inhibitors.

Methods: Hybrid-capture NGS-based genomic profiling from 88,547 tissue and 12,428 liquid NSCLC samples were queried for METamp (copy number (CN) ≥ ploidy + 4, or amplification ratio (AmpRatio; [CN/sample ploidy] ≥ 3).

View Article and Find Full Text PDF

Purpose: Copy-number (CN) features reveal the molecular state of cancers and may have predictive and prognostic value in the treatment of cancer. We sought to apply published CN analysis methods to a large pan-cancer data set and characterize ubiquitous CN signatures across tumor types, including potential utility for treatment selection.

Methods: We analyzed the landscape of CN features in 260,333 pan-cancer samples.

View Article and Find Full Text PDF

Purpose: Profiling of circulating tumor DNA (ctDNA) is increasingly adopted in the management of solid tumors, concurrent with increased availability of more comprehensive ctDNA panels. However, variable ctDNA shed can result in variable assay sensitivity. We studied the relationship between ctDNA tumor fraction (TF) and detection of actionable alterations across cancer types.

View Article and Find Full Text PDF

Background: The amounts of circulating cell-free DNA (cfDNA) and circulating-tumor DNA (ctDNA) present in peripheral blood liquid biopsies can vary due to preanalytic/analytic variables. In this study, we examined the impact of patient age, sex, stage, and tumor type on cfDNA yield, ctDNA fraction, and estimated ctDNA quantity from a large cohort of clinical liquid biopsy samples.

Methods: We performed a retrospective analysis of 12 139 consecutive samples received for liquid biopsy (FoundationOne® Liquid) clinical testing.

View Article and Find Full Text PDF

Purpose: Comprehensive genomic profiling (CGP) is of increasing value for patients with metastatic castration-resistant prostate cancer (mCRPC). mCRPC tends to metastasize to bone, making tissue biopsies challenging to obtain. We hypothesized CGP of cell-free circulating tumor DNA (ctDNA) could offer a minimally invasive alternative to detect targetable genomic alterations (GA) that inform clinical care.

View Article and Find Full Text PDF

Genomic profiling of circulating tumor DNA derived from cell-free DNA (cfDNA) in blood can provide a noninvasive method for detecting genomic biomarkers to guide clinical decision making for cancer patients. We developed a hybrid capture-based next-generation sequencing assay for genomic profiling of circulating tumor DNA from blood (FoundationACT). High-sequencing coverage and molecular barcode-based error detection enabled accurate detection of genomic alterations, including short variants (base substitutions, short insertions/deletions) and genomic re-arrangements at low allele frequencies (AFs), and copy number amplifications.

View Article and Find Full Text PDF

Pancreatic islets exhibit bursting oscillations in response to elevated blood glucose. These oscillations are accompanied by oscillations in the free cytosolic Ca concentration ( ), which drives pulses of insulin secretion. Both islet Ca and metabolism oscillate, but there is some debate about their interrelationship.

View Article and Find Full Text PDF

Background: The evolutionary pressures that underlie the large-scale functional organization of the genome are not well understood in eukaryotes. Recent evidence suggests that functionally similar genes may colocalize (cluster) in the eukaryotic genome, suggesting the role of chromatin-level gene regulation in shaping the physical distribution of coordinated genes. However, few of the bioinformatic tools currently available allow for a systematic study of gene colocalization across several, evolutionarily distant species.

View Article and Find Full Text PDF

When growth regulatory genes are damaged in a cell, it may become cancerous. Current technological advances in the last decade have allowed the characterization of the whole genome of these cells by directly or indirectly measuring DNA changes. Complementary analyses were developed to make sense of the massive amounts of data generated.

View Article and Find Full Text PDF

Plasma insulin is pulsatile and reflects oscillatory insulin secretion from pancreatic islets. Although both islet Ca(2+) and metabolism oscillate, there is disagreement over their interrelationship, and whether they can be dissociated. In some models of islet oscillations, Ca(2+) must oscillate for metabolic oscillations to occur, whereas in others metabolic oscillations can occur without Ca(2+) oscillations.

View Article and Find Full Text PDF

Individual mouse pancreatic islets exhibit oscillations in [Ca(2+)](i) and insulin secretion in response to glucose in vitro, but how the oscillations of a million islets are coordinated within the human pancreas in vivo is unclear. Islet to islet synchronization is necessary, however, for the pancreas to produce regular pulses of insulin. To determine whether neurohormone release within the pancreas might play a role in coordinating islet activity, [Ca(2+)](i) changes in 4-6 isolated mouse islets were simultaneously monitored before and after a transient pulse of a putative synchronizing agent.

View Article and Find Full Text PDF