Background: The possibility of extracting RNA and measuring RNA expression from paraffin sections can allow extensive investigations on stored paraffin samples obtained from diseased livers and could help with studies of the natural history of liver fibrosis and inflammation, and in particular, correlate basic mechanisms to clinical outcomes.
Results: To address this issue, a pilot study of multiplex gene expression using branched-chain DNA technology was conducted to directly measure mRNA expression in formalin-fixed paraffin-embedded needle biopsy samples of human liver. Twenty-five genes were selected for evaluation based on evidence obtained from human fibrotic liver, a rat BDL model and in vitro cultures of immortalized human hepatic stellate cells.
Certain compounds that induce liver injury clinically are not readily identified from earlier preclinical studies. Novel biomarkers are being sought to be applied across the pharmaceutical pipeline to fill this knowledge gap and to add increased specificity for detecting drug-induced liver injury in combination with aminotransferases (alanine and aspartate aminotransferase)--the current reference-standard biomarkers used in the clinic. The gaps in the qualification process for novel biomarkers of regulatory decision-making are assessed and compared with aminotransferase activities to guide the determination of safe compound margins for drug delivery to humans where monitoring for potential liver injury is a cause for concern.
View Article and Find Full Text PDFDrug-induced liver injury (DILI) is the most frequent cause of discontinuation of new chemical entities during development. DILI can either be intrinsic/predictable or an idiosyncratic type. These two forms of DILI are contrasted in their manifestation and diagnosis.
View Article and Find Full Text PDF