Publications by authors named "Bernard Desmazieres"

Article Synopsis
  • Atmospheric pressure photoionization (APPI) combined with mass spectrometry effectively ionized various polymers, primarily generating intact negative ions like chlorinated adducts, while positive ion mode often resulted in significant fragmentation.
  • The study required careful adjustment of parameters such as temperature and ion transfer voltage to optimize detection of polymer distributions, and utilized synchrotron radiation to explore the effect of photon energy on ionization efficiency across different solvents.
  • Findings indicated that the optimal photon energy for polymer ionization was related to the solvent's ionization energy, highlighting challenges in obtaining intact ions for heavier oligomers, which has implications for the analysis of synthetic materials.
View Article and Find Full Text PDF

Capillary electrophoresis with photodiode array detection (CE-PDA) and with electrospray ionisation-mass spectrometry (CE-ESI-MS) was used for the separation and the identification of 23 synthetic organic dyes, among those used in early 20th century colour photographs such as autochromes. Both cationic and anionic dyes could be separated within 15min using a single CE-PDA method. The method was used as the basis to develop a CE-ESI-MS methodology through the optimisation of the relevant ESI and MS parameters.

View Article and Find Full Text PDF

For a complete understanding of the raw material used for cosmetic surgery under uncontrolled medical conditions, an unknown sample of polydimethylsiloxanes has been investigated utilizing a combination of analytical techniques: pyrolysis/gas chromatography/mass spectrometry (Py/GC/MS), electrospray ionization (ESI)-MS, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)MS, and liquid chromatography (LC)/MS. Among these techniques, the LC/APCI-MS coupling allowed the fastest and more effective analysis. In addition, the complexity of the mass spectra deduced from these LC/MS experiments was simplified compared to the mass spectra obtained by MALDI-TOF.

View Article and Find Full Text PDF

The main advantage of the APCI interface for the LC-MS analysis of synthetic polymers resides in its compatibility with the main chromatographic modes: reversed-phase liquid chromatography, normal-phase liquid chromatography, and size exclusion chromatography in organic phase, with the usual flow rates. Moreover, APCI can be used in positive or negative modes. Representative applications are described to highlight benefits and limitations of the LC-APCI-MS technique with the analysis of industrial polymers up to molecular masses of 5 kDa: polyethers; polysiloxanes; and copolymers of siloxanes.

View Article and Find Full Text PDF

Chemical properties of ethylene oxide (EO) and propylene oxide (PO) block copolymers are strongly dependent on their sequence. Useful information about copolymer sequence can be obtained by tandem mass spectrometry (MS/MS). In this work, collision-induced dissociation (CID) of ammonium adducts of various linear triblock and glycerol derivative diblock copolyethers produced by electrospray ionization was studied under low-energy conditions.

View Article and Find Full Text PDF

Triblock copolymers of ethylene oxide (EO) and propylene oxide (PO) are widely used in the chemical industry as nonionic surfactants. Triblock copolymers can be arranged in a EO-PO-EO or PO-EO-PO sequence. This arrangement results in an amphiphilic copolymer, in which the block sequence and block length determine the properties of the copolymer.

View Article and Find Full Text PDF

Two model peptides, des-Arg1-bradykinin (DAB) and bradykinin (B), were cationized by Ag+ after their separation by reversed-phase liquid chromatography (RPLC) prior to mass spectrometry (MS). Silver nitrate solution was used as a post-column reagent. The RPLC and MS experimental conditions were optimized using flow injection in order to obtain sufficiently abundant silver adducts to permit MS/MS experiments.

View Article and Find Full Text PDF