Ground based research modalities of microgravity have been proposed as innovative methods to investigate the aetiology of chronic age-related conditions such as cardiovascular disease. Dry Immersion (DI), has been effectively used to interrogate the sequelae of physical inactivity (PI) and microgravity on multiple physiological systems. Herein we look at the causa et effectus of 3-day DI on platelet phenotype, and correlate with both miRomic and circulating biomarker expression.
View Article and Find Full Text PDFThe toxic benthic dinoflagellate Ostreopsis ovata causes harmful algal blooms. During five years, citizens have monitored blooms of O. cf.
View Article and Find Full Text PDFBackground: Burn injuries are a major cause of morbidity and mortality worldwide. Despite advances in therapeutic strategies for the management of patients with severe burns, the sequelae are pathophysiologically profound, up to the systemic and metabolic levels. Management of patients with a severe burn injury is a long-term, complex process, with treatment dependent on the degree and location of the burn and total body surface area (TBSA) affected.
View Article and Find Full Text PDFVenoconstrictive thigh cuffs are used by cosmonauts to ameliorate symptoms associated with cephalad fluid shift. A ground simulation of microgravity, using the dry immersion (DI) model, was performed to assess the effects of thigh cuffs on body fluid changes and dynamics, as well as on cardiovascular deconditioning. Eighteen healthy men (25-43 years), randomly divided into two groups, (1) control group or (2) group with thigh cuffs worn 10 h/day, underwent 5-day DI.
View Article and Find Full Text PDFThe data presented in this article are connected to our research article entitled "D2A-Ala peptide derived from the urokinase receptor exerts anti-tumoural effects in vitro and in vivo" (Furlan et al., 2018). These data further extend our understanding of the inhibitory effects of D2A-Ala peptide.
View Article and Find Full Text PDFD2A-Ala is a synthetic peptide that has been created by introducing mutations in the original D2A sequence, IQEGEEGRPKDDR of human urokinase receptor (uPAR). In vitro, D2A-Ala peptide displays strong anti-tumoural properties inhibiting EGF-induced chemotaxis, invasion and proliferation of a human fibrosarcoma cell line, HT 1080, and a human colorectal adenocarcinoma cell line, HT 29. D2A-Ala exerts its effects by preventing EGF receptor (EGFR) phosphorylation.
View Article and Find Full Text PDFThe urokinase receptor (uPAR) stimulates cell proliferation by forming a macromolecular complex with αvβ3 integrin and the epidermal growth factor receptor (EGFR, ErbB1 or HER1) that we name the uPAR proliferasome. uPAR transactivates EGFR, which in turn mediates uPAR-initiated mitogenic signal to the cell. EGFR activation and EGFR-dependent cell growth are blocked in the absence of uPAR expression or when uPAR activity is inhibited by antibodies against either uPAR or EGFR.
View Article and Find Full Text PDFThe data presented herein are connected to our research article (doi: 10.1016/j.biocel.
View Article and Find Full Text PDFThe glycosyl-phosphatidyl-inositol (GPI)-anchored urokinase receptor (uPAR) has no intracellular domain, but nevertheless initiates signalling through proximal interactions with other membrane receptors including integrins. The relationships between uPAR and ezrin/radixin/moesin (ERM) proteins, moesin and merlin have never been explored. Moesin and merlin are versatile membrane-actin links and regulators of receptors signalling, respectively.
View Article and Find Full Text PDFThe urokinase receptor (uPAR) was originally identified as the membrane receptor of the serine protease urokinase (uPA), thereby implicated in the plasminogen activation cascade and regulation of pericellular proteolysis. Later on, vitronectin was showed to be another major ligand providing uPAR with a role in cell adhesion. Other unrelated ligands have been subsequently reported including for example factor XII and SRPX2 expanding the functions of uPAR to unexpected biological areas such as the initiation of the coagulation cascade or the regulation of language development.
View Article and Find Full Text PDFCurr Pharm Des
December 2011
The story that led to the discovery of urokinase receptor (uPAR) system started in 1947 with the report of MacFarlane and Pilling who identified but did not named urokinase (uPA). Today, the uPAR system is recognized as one very important actor in tumourigenesis and is even considered as a valuable tumour marker. Its critical functions justify the important effort of translational research that has produced many inhibitors which unfortunately failed to be transferred in the clinic.
View Article and Find Full Text PDFThe urokinase receptor (uPAR) is a multifunctional glycosylphosphatidylinositol-anchored protein that regulates important processes such as gene expression, cell proliferation, adhesion, migration, invasion, and metastasis. uPAR is an essential component of the plasminogen activation cascade, a protease receptor that binds the urokinase-type plasminogen activator. uPAR is also an adhesion-modulating receptor, and a signalling receptor transmitting signals to the cell through lateral interactions with a wide array of membrane receptors.
View Article and Find Full Text PDFWe have previously reported that the serpin plasminogen activator inhibitor-1 activates the Janus kinase (Jak)/signal transducer and activator of transcription (Stat) signalling pathway and stimulates cell migration by binding to the low-density lipoprotein receptor-related protein. All the free forms (cleaved, latent or active) of this inhibitor were shown to be motogenic. However, the plasminogen activator inhibitor-1 can also interact with vitronectin which acts as a cofactor by increasing the half-life of the active form of the serpin.
View Article and Find Full Text PDFBackground: Urokinase, its receptor and the integrins are functionally associated and involved in regulation of cell signaling, migration, adhesion and proliferation. No structural information is available on this potential multimolecular complex. However, the tri-dimensional structure of urokinase, urokinase receptor and integrins is known.
View Article and Find Full Text PDFIn vivo tumor cell migration through integrin-dependent pathways is key to the metastatic behavior of malignant cells. Using quantitative in vivo assays and intravital imaging, we assessed the impact of cell migration, regulated by the integrin-associated tetraspanin CD151, on spontaneous human tumor cell metastasis. We demonstrate that promoting immobility through a CD151-specific metastasis blocking mAb prevents tumor cell dissemination by inhibiting intravasation without affecting primary tumor growth, tumor cell arrest, extravasation, or growth at the secondary site.
View Article and Find Full Text PDFWe investigated the interaction between the urokinase receptor (uPAR) and the integrin alphavbeta3. Vitronectin (VN) induces cell migration by binding to alphavbeta3, but expression of the uPAR boosts its efficacy. Thus, uPAR may regulate VN-induced cell migration by interacting laterally with alphavbeta3.
View Article and Find Full Text PDFAlthough plasminogen activator inhibitor-1 (PAI-1) is known to stimulate cell migration, little is known about underlying mechanisms. We show that both active and inactive (e.g.
View Article and Find Full Text PDFThe chromosomal protein HMGB1 is now regarded as a proinflammatory cytokine. Importantly, HMGB1 has chemotactic activity suggesting its involvement in the early and late events of the inflammatory reaction. Therefore, HMGB1 has all the hallmarks of a chemokine (chemotactic cytokine).
View Article and Find Full Text PDF