Publications by authors named "Bernard A Brown"

Article Synopsis
  • - Archaeal ribosomal protein L7Ae is an RNA-binding protein involved in modifying archaeal RNAs post-transcriptionally, specifically from the organism Aeropyrum pernix, which is part of the Crenarchaea.
  • - The crystal structure of Ap L7Ae was determined at a high resolution of 1.56 Å and has an exceptionally high melting temperature (>383 K), indicating its stability.
  • - Comparisons of Ap L7Ae's structure with homologs from other organisms show that its stability is largely due to a dense network of ion pairs that help maintain its shape, making it one of the most thermostable single-domain proteins known.
View Article and Find Full Text PDF

Fibrillarin is the key methyltransferase associated with the C/D class of small nuclear ribonucleoproteins (snRNPs) and participates in the preliminary step of pre-ribosomal rRNA processing. This molecule is found in the fibrillar regions of the eukaryotic nucleolus and is involved in methylation of the 2'-O atom of ribose in rRNA. Human fibrillarin contains an N-terminal GAR domain, a central RNA-binding domain comprising an RNP-2-like superfamily consensus sequence and a catalytic C-terminal helical domain.

View Article and Find Full Text PDF

Box C/D RNA-protein complexes (RNPs) guide the 2'-O-methylation of nucleotides in both archaeal and eukaryotic ribosomal RNAs. The archaeal box C/D and C'/D' RNP subcomplexes are each assembled with three sRNP core proteins. The archaeal Nop56/58 core protein mediates crucial protein-protein interactions required for both sRNP assembly and the methyltransferase reaction by bridging the L7Ae and fibrillarin core proteins.

View Article and Find Full Text PDF

Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs.

View Article and Find Full Text PDF
Article Synopsis
  • * The archaeal L7Ae can bind to a unique K-loop motif found in certain sRNAs, while the eukaryotic counterpart cannot, highlighting differences in their functionality despite some conserved features.
  • * The study identifies five key amino acids that allow L7Ae to bind the K-loop, which are important for protein interactions in RNP assembly, suggesting an evolutionary relationship among similar RNA-binding proteins across different life forms.
View Article and Find Full Text PDF

Methylation of ribosomal RNA (rRNA) is required for optimal protein synthesis. Multiple 2'-O-ribose methylations are carried out by box C/D guide ribonucleoproteins [small ribonucleoproteins (sRNPs) and small nucleolar ribonucleoproteins (snoRNPs)], which are conserved from archaea to eukaryotes. Methylation is dictated by base pairing between the specific guide RNA component of the sRNP or snoRNP and the target rRNA.

View Article and Find Full Text PDF

The A form RNA double helix can be transformed to a left-handed helix, called Z-RNA. Currently, little is known about the detailed structural features of Z-RNA or its involvement in cellular processes. The discovery that certain interferon-response proteins have domains that can stabilize Z-RNA as well as Z-DNA opens the way for the study of Z-RNA.

View Article and Find Full Text PDF
Article Synopsis
  • Archaeal box C/D sRNAs play a crucial role in the methylation of specific nucleotides in ribosomal RNAs and tRNAs in Methanocaldococcus jannaschii.
  • The core proteins (ribosomal protein L7, Nop56/58, and fibrillarin) assemble to form a sRNP complex necessary for this process, with the coiled-coil domain of Nop56/58 promoting self-dimerization but not being essential for overall sRNP assembly.
  • Mutations or deletions in the coiled-coil domain do not affect protein binding or assembly but disrupt the proper methylation process, indicating that while self-dimerization isn't required for function, structural integrity of
View Article and Find Full Text PDF

ZBP1 is involved in host responses against cellular stresses, including tumorigenesis and viral infection. Structurally, it harbors two copies of the Zalpha domain containing the Zalpha motif, at its N terminus. Here, we attempted to characterize the Z-DNA binding activities of two Zalpha domains in the human ZBP1, hZalpha(ZBP1) and hZbeta(ZBP1), using circular dichroism (CD).

View Article and Find Full Text PDF

To understand the role of structural elements of RNA pseudoknots in controlling the extent of -1-type ribosomal frameshifting, we determined the crystal structure of a high-efficiency frameshifting mutant of the pseudoknot from potato leaf roll virus (PLRV). Correlations of the structure with available in vitro frameshifting data for PLRV pseudoknot mutants implicate sequence and length of a stem-loop linker as modulators of frameshifting efficiency. Although the sequences and overall structures of the RNA pseudoknots from PLRV and beet western yellow virus (BWYV) are similar, nucleotide deletions in the linker and adjacent minor groove loop abolish frameshifting only with the latter.

View Article and Find Full Text PDF

The Zalpha domains represent a growing subfamily of the winged helix-turn-helix (HTH) domain family whose members share a remarkable ability to bind specifically to Z-DNA and/or Z-RNA. They have been found exclusively in proteins involved in interferon response and, while their importance in determining pox viral pathogenicity has been demonstrated, their actual target and biological role remain obscure. Cellular proteins containing Zalpha domains bear a second homologous domain termed Zbeta, which appears to lack the ability to bind left-handed nucleic acids.

View Article and Find Full Text PDF

Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal, box H/ACA, and box C/D sRNAs. The crystal structure of Methanocaldococcus jannaschii L7Ae has been determined to 1.45 A, and L7Ae's amino acid composition, evolutionary conservation, functional characteristics, and structural details have been analyzed.

View Article and Find Full Text PDF

The translational recoding of UGA as selenocysteine (Sec) is directed by a SECIS element in the 3' untranslated region (UTR) of eukaryotic selenoprotein mRNAs. The selenocysteine insertion sequence (SECIS) contains two essential tandem sheared G.A pairs that bind SECIS-binding protein 2 (SBP2), which recruits a selenocysteine-specific elongation factor and Sec-tRNA(Sec) to the ribosome.

View Article and Find Full Text PDF

Interest to the left-handed DNA conformation has been recently boosted by the findings that a number of proteins contain the Zalpha domain, which has been shown to specifically recognize Z-DNA. The biological function of Zalpha is presently unknown, but it has been suggested that it may specifically direct protein regions of Z-DNA induced by negative supercoiling in actively transcribing genes. Many studies, including a crystal structure in complex with Z-DNA, have focused on the human ADAR1 Zalpha domain in isolation.

View Article and Find Full Text PDF

The Zalpha domain of human double-stranded RNA adenosine deaminase (ADAR1) has been crystallized with a hexanucleotide containing alternating deoxyribose and ribose furanose sugars. Solution circular dichroism experiments show that this double-stranded chimera (dCrG)(3) initially adopts the right-handed A-conformation. However, addition of stoichiometric amounts of Zalpha causes a rapid transition to the Z-conformation.

View Article and Find Full Text PDF