Acta Crystallogr Sect F Struct Biol Cryst Commun
September 2013
Acta Crystallogr Sect F Struct Biol Cryst Commun
August 2012
Fibrillarin is the key methyltransferase associated with the C/D class of small nuclear ribonucleoproteins (snRNPs) and participates in the preliminary step of pre-ribosomal rRNA processing. This molecule is found in the fibrillar regions of the eukaryotic nucleolus and is involved in methylation of the 2'-O atom of ribose in rRNA. Human fibrillarin contains an N-terminal GAR domain, a central RNA-binding domain comprising an RNP-2-like superfamily consensus sequence and a catalytic C-terminal helical domain.
View Article and Find Full Text PDFBox C/D RNA-protein complexes (RNPs) guide the 2'-O-methylation of nucleotides in both archaeal and eukaryotic ribosomal RNAs. The archaeal box C/D and C'/D' RNP subcomplexes are each assembled with three sRNP core proteins. The archaeal Nop56/58 core protein mediates crucial protein-protein interactions required for both sRNP assembly and the methyltransferase reaction by bridging the L7Ae and fibrillarin core proteins.
View Article and Find Full Text PDFBox C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs.
View Article and Find Full Text PDFMethylation of ribosomal RNA (rRNA) is required for optimal protein synthesis. Multiple 2'-O-ribose methylations are carried out by box C/D guide ribonucleoproteins [small ribonucleoproteins (sRNPs) and small nucleolar ribonucleoproteins (snoRNPs)], which are conserved from archaea to eukaryotes. Methylation is dictated by base pairing between the specific guide RNA component of the sRNP or snoRNP and the target rRNA.
View Article and Find Full Text PDFThe A form RNA double helix can be transformed to a left-handed helix, called Z-RNA. Currently, little is known about the detailed structural features of Z-RNA or its involvement in cellular processes. The discovery that certain interferon-response proteins have domains that can stabilize Z-RNA as well as Z-DNA opens the way for the study of Z-RNA.
View Article and Find Full Text PDFZBP1 is involved in host responses against cellular stresses, including tumorigenesis and viral infection. Structurally, it harbors two copies of the Zalpha domain containing the Zalpha motif, at its N terminus. Here, we attempted to characterize the Z-DNA binding activities of two Zalpha domains in the human ZBP1, hZalpha(ZBP1) and hZbeta(ZBP1), using circular dichroism (CD).
View Article and Find Full Text PDFTo understand the role of structural elements of RNA pseudoknots in controlling the extent of -1-type ribosomal frameshifting, we determined the crystal structure of a high-efficiency frameshifting mutant of the pseudoknot from potato leaf roll virus (PLRV). Correlations of the structure with available in vitro frameshifting data for PLRV pseudoknot mutants implicate sequence and length of a stem-loop linker as modulators of frameshifting efficiency. Although the sequences and overall structures of the RNA pseudoknots from PLRV and beet western yellow virus (BWYV) are similar, nucleotide deletions in the linker and adjacent minor groove loop abolish frameshifting only with the latter.
View Article and Find Full Text PDFThe Zalpha domains represent a growing subfamily of the winged helix-turn-helix (HTH) domain family whose members share a remarkable ability to bind specifically to Z-DNA and/or Z-RNA. They have been found exclusively in proteins involved in interferon response and, while their importance in determining pox viral pathogenicity has been demonstrated, their actual target and biological role remain obscure. Cellular proteins containing Zalpha domains bear a second homologous domain termed Zbeta, which appears to lack the ability to bind left-handed nucleic acids.
View Article and Find Full Text PDFArchaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal, box H/ACA, and box C/D sRNAs. The crystal structure of Methanocaldococcus jannaschii L7Ae has been determined to 1.45 A, and L7Ae's amino acid composition, evolutionary conservation, functional characteristics, and structural details have been analyzed.
View Article and Find Full Text PDFThe translational recoding of UGA as selenocysteine (Sec) is directed by a SECIS element in the 3' untranslated region (UTR) of eukaryotic selenoprotein mRNAs. The selenocysteine insertion sequence (SECIS) contains two essential tandem sheared G.A pairs that bind SECIS-binding protein 2 (SBP2), which recruits a selenocysteine-specific elongation factor and Sec-tRNA(Sec) to the ribosome.
View Article and Find Full Text PDFInterest to the left-handed DNA conformation has been recently boosted by the findings that a number of proteins contain the Zalpha domain, which has been shown to specifically recognize Z-DNA. The biological function of Zalpha is presently unknown, but it has been suggested that it may specifically direct protein regions of Z-DNA induced by negative supercoiling in actively transcribing genes. Many studies, including a crystal structure in complex with Z-DNA, have focused on the human ADAR1 Zalpha domain in isolation.
View Article and Find Full Text PDFThe Zalpha domain of human double-stranded RNA adenosine deaminase (ADAR1) has been crystallized with a hexanucleotide containing alternating deoxyribose and ribose furanose sugars. Solution circular dichroism experiments show that this double-stranded chimera (dCrG)(3) initially adopts the right-handed A-conformation. However, addition of stoichiometric amounts of Zalpha causes a rapid transition to the Z-conformation.
View Article and Find Full Text PDF